当前位置: 首页 > news >正文

【Intel CVPR 2024】通过图像扩散模型生成高质量360度场景,只需要一个语言模型

在当前人工智能取得突破性进展的时代,从单一输入图像生成全景场景仍是一项关键挑战。大多数现有方法都使用基于扩散的迭代或同步多视角内绘。然而,由于缺乏全局场景布局先验,导致输出结果存在重复对象(如卧室中的多张床),或者每个视图都需要耗时的人工文本输入。我们提出的 L-MAGIC 是一种新型方法,它利用大型语言模型进行引导,同时扩散 360 度全景场景的多个连贯视图。L-MAGIC 利用预先训练好的扩散和语言模型,无需微调,确保零误差性能。超分辨率和多视图融合技术进一步提高了输出质量。广泛的实验证明,与相关研究相比,所生成的全景场景具有更好的场景布局和透视图渲染质量,在人类评估中的优越性大于 70%。结合条件扩散模型,L-MAGIC 可以接受各种输入模式,包括但不限于文本、深度图、草图和彩色脚本。通过深度估计,还能生成三维点云,并利用摄像机的流体运动进行动态场景探索。
在这里插入图片描述

Pipeline

在这里插入图片描述
论文:https://arxiv.org/pdf/2406.01843

项目:https://zhipengcai.github.io/MMPano/

Github:https://github.com/IntelLabs/MMPano

在这里插入图片描述

方法

L-MAGIC 是一个结合了语言模型及扩散模型的场景生成框架。L-MAGIC 通过自然图像连接各类不同模态的输入。当输入不是一张自然图像时,L-MAGIC 使用成熟的条件扩散模型如 ControlNet 从各种模态的输入(文字,手绘草图,深度图等等)生成一张自然图像。

在获得自然图像之后,L-MAGIC 通过 iterative warping and inpainting 来生成 360 度场景的多个视角。在每一个 iteration 中,warping step 将已生成的多视角 warp 到一个新的视角,实例中的黑色部分代表新视角中的缺失像素。Inpainting step 使用基于扩散的图像 inpainting 模型(Stable Diffusion v2)生成缺失像素。为了使图像扩散模型能够生成多样的全局场景结构,L-MAGIC 使用语言模型控制扩散模型在每个视角需要生成的场景内容。

除了生成 360 度场景的全景图,利用深度估计模型,L-MAGIC 还能够生成包含相机旋转及平移的沉浸式视频,以及场景的三维点云。由于无需微调,L-MAGIC 能够有效地保持语言及扩散模型的泛化性,实现多样化场景的高质量生成。

L-MAGIC 的核心是使用语言模型全自动地控制扩散模型。

使用 ChatGPT 作为 LLM 控制器可以获得最佳性能,这需要您申请 OpenAI API 密钥。

如果您所在地区无法访问 ChatGPT API,我们还提供了使用免费开源 LLM 控制器(如 Llama3)的方法。有关如何启用的说明,请参阅下文。您可能需要设置 HF_TOKEN 或传递 huggingface 令牌。你也可以自由贡献代码,启用其他 LLM。

python3 mm_pano/mmpano.py \--init_image exp/example/0.png \--output_folder exp/outputs \--dtype bfloat16 --device hpu \--llm_model_name gpt-4 \--api_key <your ChatGPT API key> \--save_pano_img \  # To save the generated panorama picture--gen_video  # To generate and save the video

详情请看github

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

【Intel CVPR 2024】通过图像扩散模型生成高质量360度场景,只需要一个语言模型

在当前人工智能取得突破性进展的时代&#xff0c;从单一输入图像生成全景场景仍是一项关键挑战。大多数现有方法都使用基于扩散的迭代或同步多视角内绘。然而&#xff0c;由于缺乏全局场景布局先验&#xff0c;导致输出结果存在重复对象&#xff08;如卧室中的多张床&#xff0…...

postman教程-21-Newman运行集合生成测试报告

上一小节我们Postman Newman的安装方法&#xff0c;本小节我们讲解一下Postman Newman的具体使用方法。 使用Newman运行集合 1、导出Postman集合&#xff1a; 在Postman中&#xff0c;选择你想要运行的集合&#xff0c;然后点击“导出”按钮&#xff0c;选择导出为“Collect…...

基于条件谱矩的时间序列分析(以轴承故障诊断为例,MATLAB)

谱矩方法可以对数据的表面形貌做较为细致的描述&#xff0e;它以随机过程为理论基础&#xff0c;用各阶谱矩及统计不变量等具体的参数表征表面的几何形态&#xff0c;算术平均顶点曲率是一种基于四阶谱矩的统计不变量。 鉴于此&#xff0c;采用条件谱矩方法对滚动轴承进行故障诊…...

ArcGIS Pro 3.0加载在线高德地图

1、打开ArcGIS Online官网&#xff0c;登录自己的账号&#xff0c;登录后效果如下图所示 官网地址&#xff1a;https://www.arcgis.com/home/webmap/viewer.html 2、点击Add&#xff0c;选择Add Layer from Web&#xff0c;如下图所示 3、在显示的Add Layer from Web页面内&am…...

服务器防漏扫,主机加固方案来解决

什么是漏扫&#xff1f; 漏扫是漏洞扫描的简称。漏洞扫描是一种安全测试方法&#xff0c;用于发现计算机系统、网络或应用程序中的潜在漏洞和安全弱点。通过使用自动化工具或软件&#xff0c;漏洞扫描可以检测系统中存在的已知漏洞&#xff0c;并提供相关的报告和建议&#xf…...

Linux2(基本命令2)

目录 一、文件类型分类 二、基本命令 1. find 帮助查询 2. stat 查看文件的信息 3. wc 统计文本 4. 查看文本内容 4.1 cat 4.2 more 4.3 less 4.4 head 4.5 tail 5. cal 显示日历 6. date 显示时间 7. du 文件大小 8. ln 链接 软链接 硬链接 区别 9. history…...

拼团+秒杀+优惠折扣+个人免签双端商城源码

源码说明 可用拼团秒杀优惠折扣个人免签双端商城源码&#xff0c;全功能完美双端&#xff0c;对接个人免签支付。 这款商城源码非常完整&#xff0c;整体也非常简洁&#xff0c;功能全面&#xff0c;没有那么多冗杂的多余页面和无用代码&#xff0c;拿到后优化了下整体代码&a…...

【数据结构】双向链表(C语言)

哈喽铁子们&#xff0c;这里是博主鳄鱼皮坡。这篇文章将分享交流双向链表的相关知识&#xff0c;下面正式开始。 1. 双向链表的结构 注意&#xff1a;这里的“带头”跟前面我们说的“头节点”是两个概念&#xff0c;实际前面的在单链表阶段称呼不严 谨&#xff0c;但是为了老…...

【TensorFlow深度学习】WGAN与DCGAN在图像生成中的应用实例

WGAN与DCGAN在图像生成中的应用实例 WGAN与DCGAN在图像生成中的应用实例&#xff1a;一场深度学习的视觉盛宴DCGAN简介WGAN简介应用实例&#xff1a;基于DCGAN的图像生成应用实例&#xff1a;WGAN的图像生成实践结语 WGAN与DCGAN在图像生成中的应用实例&#xff1a;一场深度学习…...

垫付商贩任务补单平台补单系统网站源码提供

垫付商贩任务补单平台补单系统网站源码提供...

vue富文本wangeditor加@人功能(vue2 vue3都可以)

依赖 "wangeditor/editor": "^5.1.23", "wangeditor/editor-for-vue": "^5.1.12", "wangeditor/plugin-mention": "^1.0.0",RichEditor.vue <template><div style"border: 1px solid #ccc; posit…...

######## redis各章节终篇索引(更新中) ############

其他 父子关系&#xff08;ctx、协程&#xff09;#### golang存在的父子关系 ####_子goroutine panic会导致父goroutine挂掉吗-CSDN博客 参数传递&#xff08;slice、map&#xff09;#### go中参数传递&#xff08;涉及&#xff1a;切片slice、map、channel等&#xff09; ###…...

一个基于MySQL的数据库课程设计的基本框架

数据库课程设计&#xff08;MySQL&#xff09;通常涉及多个步骤&#xff0c;以确保数据库的有效设计、实现和维护。以下是一个基于MySQL的数据库课程设计的基本框架&#xff0c;结合参考文章中的相关信息进行整理&#xff1a; ### 一、引言 * **背景**&#xff1a;简要介绍为…...

架构设计基本原则

开闭原则 开闭原则&#xff08;Open Closed Principle&#xff0c;OCP&#xff09;是面向对象编程&#xff08;OOP&#xff09;中的一个核心原则&#xff0c;主要强调的是软件实体&#xff08;类、模块、函数等&#xff09;应该对扩展开放&#xff0c;对修改封闭。 解释&…...

云原生应用开发培训,开启云计算时代的新征程

在云计算时代&#xff0c;云原生应用开发技术已经成为IT领域的热门话题。如果您想要转型至云原生领域&#xff0c;我们的云原生应用开发培训将帮助您开启新征程。 我们的课程内容涵盖了云原生技术的基础概念、容器技术、微服务架构、持续集成与持续发布&#xff08;CI/CD&#…...

【数据库设计】宠物商店管理系统

目录 &#x1f30a;1 问题的提出 &#x1f30a;2 需求分析 &#x1f30d;2.1 系统目的 &#x1f30d;2.2 用户需求 &#x1f33b;2.2.1 我国宠物行业作为新兴市场&#xff0c;潜力巨大 &#x1f33b;2.2.2 我国宠物产品消费规模逐年增大 &#x1f33b;2.2.3 我国宠物主选…...

前端 JS 经典:node 的模块查找策略

前言&#xff1a;我们引入模块后&#xff0c;node 大概的查找步骤分为 文件查找、文件夹查找、内置模块查找、第三方模块查找&#xff0c;在 node 中使用 ESM 模块语法&#xff0c;需要创建 package.json 文件&#xff0c;并将 type 设置为 module。简单起见&#xff0c;我们用…...

C++中的23种设计模式

目录 摘要 创建型模式 1. 工厂方法模式&#xff08;Factory Method Pattern&#xff09; 2. 抽象工厂模式&#xff08;Abstract Factory Pattern&#xff09; 3. 单例模式&#xff08;Singleton Pattern&#xff09; 4. 生成器模式&#xff08;Builder Pattern&#xff0…...

vue.js+node.js+mysql在线聊天室源码

vue.jsnode.jsmysql在线聊天室源码 技术栈&#xff1a;vue.jsElement UInode.jssocket.iomysql vue.jsnode.jsmysql在线聊天室源码...

浏览器无痕模式和非无痕模式的区别

无痕模式 1. 历史记录&#xff1a;在无痕模式下&#xff0c;浏览器不会保存浏览记录、下载记录、表单数据和Cookies。当你关闭无痕窗口后&#xff0c;这些信息都会被删除。
 2. Cookies&#xff1a;无痕模式会在会话期间临时存储Cookies&#xff0c;但在关闭无痕窗口…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

在rocky linux 9.5上在线安装 docker

前面是指南&#xff0c;后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...