torch.squeeze() dim=1 dim=-1 dim=2
对数据的维度进行压缩
使用方式:torch.squeeze(input, dim=None, out=None)
将输入张量形状中的1 去除并返回。 如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)
import torch
x = torch.rand(2, 1, 1, 3, 1, 4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 3, 4])
当给定dim时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B), squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。
注意:
如果dim指定的维度的值为1
第一种情况
import torch
x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])
import torch
x = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 3, 1, 4])
第二种情况
x = torch.rand(1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([1, 2, 1, 1, 3, 1, 4])
第三种情况
x = torch.rand(1,1,2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# # torch.Size([1, 1, 2, 1, 1, 3, 1, 4])
# # =======out_3=========
# # torch.Size([1, 2, 1, 1, 3, 1, 4])
如果dim指定的维度的值为-1
第一种情况 如果dim指定的维度的值为-1
import torchx = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=-1)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 1, 3, 1, 4])
第二种情况 如果dim指定的维度的值为-1
x = torch.rand(2,1,1,3,1,4,1)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=-1)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])
# =======out_2=========
# torch.Size([2, 1, 1, 3, 1, 4])
第三种情况 如果dim指定的维度的值为-1
x = torch.rand(2,1,1,3,1,4,1,1)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=-1)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4, 1, 1])
# =======out_3=========
# torch.Size([2, 1, 1, 3, 1, 4, 1])
如果dim指定的维度的值为2
import torchx = torch.rand(2,1,3,1,4)
print('=======x=========')
print(x.shape)
out_1 = torch.squeeze(x, dim=2)
print('=======out_1=========')
print(out_1.shape)
# =======x=========
# torch.Size([2, 1, 3, 1, 4])
# =======out_1=========
# torch.Size([2, 1, 3, 1, 4])x = torch.rand(2,1,1,3,1,4)
print('=======x=========')
print(x.shape)
out_2 = torch.squeeze(x, dim=2)
print('=======out_2=========')
print(out_2.shape)
# =======x=========
# torch.Size([2, 1, 1, 3, 1, 4])
# =======out_2=========
# torch.Size([2, 1, 3, 1, 4])x = torch.rand(1,2,1,1,3,1,1,4)
print('=======x=========')
print(x.shape)
out_3 = torch.squeeze(x, dim=2)
print('=======out_3=========')
print(out_3.shape)
# =======x=========
# torch.Size([1, 2, 1, 1, 3, 1, 1, 4])
# =======out_3=========
# torch.Size([1, 2, 1, 3, 1, 1, 4])
相关文章:
torch.squeeze() dim=1 dim=-1 dim=2
对数据的维度进行压缩 使用方式:torch.squeeze(input, dimNone, outNone) 将输入张量形状中的1 去除并返回。 如果输入是形如(A1B1C1D),那么输出形状就为: (ABCD) import torch x torch.rand(2, 1, 1, 3, 1, 4) print(x) print(x.shape) …...
智慧环保一体化平台简介
据悉,环保问题日益受到人们的关注,智慧环保一体化平台作为解决环保问题的有力工具,正逐渐走进人们的视野。朗观视觉智慧环保一体化平台通过整合各类环保资源,实现环境数据的实时监测、分析与管理,为环境保护提供智能化…...
idea在空工程中添加新模块并测试的步骤
ServicesTest是空的工程,没有pom文件。现在需要在ServicesTest目录下添加新模块作为新的工程,目的是写一下别的技术功能。 原先目录结构,ServicesTest是空的工程,没有pom文件。下面的几个模块是新的工程,相互独立。 1.…...
HCIE-QOS基本原理
QOS基本原理 QOS概述什么是QOSQoS服务模型区分服务模型QoS常用技术 (DiffServ模型)QoS数据处理流程 (DiffServ模型) QoS流分类和流标记QoS数据处理流程为什么需要流分类和流标记 简单流分类外部优先级 - VLAN报文外部优先级 - MPLS报文外部优先级 - IP报文各外部优先级间的对应…...
pycharm基本使用(常用快捷键)
0.下载 pycharm官网下载 选择合适的版本,本文以2024.1为例 1.简单应用 常用快捷键 ctrlD 复制当前行 ctrlY 删除当前行 ctrlX 剪切当前行(可用作删除,更顺手) shift↑ 选中多行ctrlshiftF10 运行 shiftF9 调试ctrl/ 注释当前…...
机器学习--回归模型和分类模型常用损失函数总结(详细)
文章目录 引言 回归模型常用损失函数均方误差(Mean Squared Error, MSE)均方根误差(Root Mean Squared Error, RMSE)平均绝对误差(Mean Absolute Error, MAE)Huber损失(Huber Loss) …...
企业选择数字工厂管理系统供应商的标准是什么
随着信息技术的飞速发展,数字化转型已成为企业提升竞争力、实现可持续发展的必由之路。在制造业领域,数字工厂管理系统实现生产流程自动化、智能化的关键工具,其选择的重要性不言而喻。本文将从多个维度探讨企业选择数字工厂管理系统供应商的…...
京准电钟|基于纳秒级的GPS北斗卫星授时服务器
京准电钟|基于纳秒级的GPS北斗卫星授时服务器 京准电钟|基于纳秒级的GPS北斗卫星授时服务器 你有没有思考过这样一个问题:火车站内,熙熙攘攘,旅客排队进站、列车停靠发车,一切井然有序。一旦有个别时间出现…...
Flutter知识点
Dart语言基础知识 Dart特性: Dart 是少数同时支持 JIT(Just In Time,即时编译)和 AOT(Ahead of Time,运行前编译)的语言之一。语言在运行之前通常都需要编译,JIT 和 AOT 则是最常见…...
2024-06-12 问AI: 在大语言模型中,什么是Jailbreak漏洞?
文心一言 在大语言模型中,Jailbreak漏洞(也称为越狱攻击或指令注入攻击)是一种特定的安全漏洞,它允许用户或攻击者通过精心设计的输入或指令,绕过模型的安全限制,诱导模型产生原本被设定为禁止或限制的输出…...
Vue22-v-model收集表单数据
一、效果图 二、代码 2-1、HTML代码 2-2、vue代码 1、v-model单选框的收集信息 v-model:默认收集的就是元素中的value值。 单选框添加默认值: 2、v-model多选框的收集信息 ①、多个选择的多选 注意: 此处的hobby要是数组!&…...
【深度学习】深入解码:提升NLP生成文本的策略与参数详解
文章目录 解码策略解码参数公式解释代码例子区别 更详细的束搜索的解释更详细的例子解释第一步第二步第三步 解码策略和解码参数在自然语言处理(NLP)模型的生成过程中起着不同的作用,但它们共同决定了生成文本的质量和特性。 解码策略 解码…...
Petalinux由于网络原因产生的编译错误(2)--Fetcher failure:Unable to find file
1 Fetcher failure:Unable to find file 错误 如果编译工程遇到如下图所示的“Fetcher failure for URL”或相似错误 出现这种错误的原因是 Petalinux 在配置和编译的时候,需要联网下载一些文件,由于网 络原因这些文件不能正常下载,导致编译…...
随手记:商品信息过多,展开收起功能
UI原型图: 页面思路: 在商品信息最小item外面有一个包裹所有item的标签,控制这个标签的高度来实现展开收起功能 <!-- 药品信息 --><view class"drugs" v-if"inquiryInfoSubmitBtn"><view class"…...
uniapp上传头像并裁剪图片
第一步写上uniapp自带的选择图片button按钮 点击之后会弹出选择图片的方式 拍照或从相册选择图片后将会跳到图片裁剪 然后我们裁剪完之后点击确定在上传图片 这里是上传图片的接口 拿到本地图片 上传的话自己想以那种方式上传都可以...
9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程
9.1.3 简单介绍单阶段模型YOLO、YOLOv2、YOLO9000、YOLOv3的发展过程 前情回顾:9.1.2 简单介绍两阶段模型R-CNN、SPPNet、Fast R-CNN、Faster R-CNN的发展过程 摘要 YOLOYOLOv2YOLO9000YOLOv3基本思想使用一个端到端的卷积神经网络直接预测目标的类别和位置针对YOL…...
英智教育智能体,AI Agent赋能教育培训行业数字化升级
教育是当前需求巨大且没有足够人力来满足的领域,每个学生个体差异较大,有限的教师资源无法针对性实行差异教学,学生学不会,教师教学压力大等问题普遍存在。 面对这些难题,英智在通用大模型能力的基础上,整合…...
什么是电脑监控软件?六款知名又实用的电脑监控软件
电脑监控软件是一种专为监控和记录计算机活动而设计的应用程序,它能够帮助用户(如家长、雇主或系统管理员)了解并管理目标计算机的使用情况。这些软件通常具有多样化的功能,包括但不限于屏幕捕捉、网络行为监控、应用程序使用记录…...
小程序名片怎么生成?AI名片生成器源码系统 为企业店铺创建自己的数字名片
在数字化时代,小程序名片已经成为企业店铺展示自身形象、推广产品和服务的重要工具。分享一个AI名片生成器源码系统春哥AI雷达智能名片小程序系统企业商业运营版,含完整代码包和详细的图文安装部署搭建教程,新手也能轻松使用,源码…...
浅谈PMP:项目管理的专业化认证
引言: 项目管理作为现代企业运营的核心环节,其重要性不言而喻。随着全球化的加速和市场竞争的加剧,企业对项目管理的需求日益增长,项目管理专业人员的需求也水涨船高。在这样的背景下,PMP(Project Managem…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
【JavaSE】多线程基础学习笔记
多线程基础 -线程相关概念 程序(Program) 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序,比如我们使用QQ,就启动了一个进程,操作系统就会为该进程分配内存…...
MySQL 8.0 事务全面讲解
以下是一个结合两次回答的 MySQL 8.0 事务全面讲解,涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容,并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念(ACID) 事务是…...
