当前位置: 首页 > news >正文

人脸匹配——OpenCV

人脸匹配

    • 导入所需的库
    • 加载dlib的人脸识别模型和面部检测器
    • 读取图片并转换为灰度图
    • 比较两张人脸
    • 选择图片并显示结果
    • 比较图片
    • 创建GUI界面
    • 运行GUI主循环
    • 运行显示
    • 全部代码

导入所需的库

cv2:OpenCV库,用于图像处理。
dlib:一个机器学习库,用于人脸检测和特征点预测。
numpy:用于数值计算的库。
PILImageTk:用于处理图像和创建Tkinter兼容的图像对象。
filedialog:Tkinter的一个模块,用于打开文件对话框。
TkLabelButtonCanvas:Tkinter库的组件,用于创建GUI。

import cv2
import dlib
import numpy as np
from PIL import Image, ImageTk
from tkinter import filedialog
from tkinter import Tk, Label, Button, Canvas

加载dlib的人脸识别模型和面部检测器

使用dlib.get_frontal_face_detector()加载面部检测器。
使用dlib.shape_predictor()加载面部特征点预测模型。
使用dlib.face_recognition_model_v1()加载人脸识别模型。

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
face_rec = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat")

读取图片并转换为灰度图

读取图片并转换为灰度图。
使用面部检测器检测图像中的面部。
如果检测到多张或没有脸,则抛出异常。
提取面部特征点并计算人脸编码。

def get_face_encoding(image_path):img = cv2.imread(image_path)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)faces = detector(gray)if len(faces) != 1:raise ValueError("图片中检测到多张或没有脸")face = faces[0]shape = predictor(gray, face)face_encoding = np.array(face_rec.compute_face_descriptor(img, shape))return face_encoding

比较两张人脸

比较两个人脸编码。
计算两个编码之间的欧氏距离。
如果距离小于0.6,则认为它们是同一个人脸。

def compare_faces(face1, face2):distance = np.linalg.norm(face1 - face2)if distance < 0.6:return "相同人脸"else:return "不同人脸"

选择图片并显示结果

定义select_image1、select_image2和select_image3函数。
打开文件对话框让用户选择图片。
将选择的图片显示在相应的画布上。

def select_image1():global image1_path, image1image1_path = filedialog.askopenfilename()image1 = Image.open(image1_path)image1 = image1.resize((300, 300), Image.LANCZOS)  # 使用Image.LANCZOS替换ANTIALIASphoto1 = ImageTk.PhotoImage(image1)canvas1.create_image(0, 0, anchor='nw', image=photo1)canvas1.image = photo1def select_image2():global image2_path, image2image2_path = filedialog.askopenfilename()image2 = Image.open(image2_path)image2 = image2.resize((300, 300), Image.LANCZOS)  # 使用Image.LANCZOS替换ANTIALIASphoto2 = ImageTk.PhotoImage(image2)canvas2.create_image(0, 0, anchor='nw', image=photo2)canvas2.image = photo2def select_image3():global image3_path, image3image3_path = filedialog.askopenfilename()image3 = Image.open(image3_path)image3 = image3.resize((300, 300), Image.LANCZOS)  # 使用Image.LANCZOS替换ANTIALIASphoto3 = ImageTk.PhotoImage(image3)canvas3.create_image(0, 0, anchor='nw', image=photo3)canvas3.image = photo3

比较图片

定义compare_images1和compare_images2函数:
获取两个人脸编码并进行对比。
显示对比结果。

def compare_images1():try:face1 = get_face_encoding(image1_path)face2 = get_face_encoding(image2_path)result1 = compare_faces(face1, face2)result_label1.config(text=result1)except Exception as e:result_label1.config(text="发生错误: " + str(e))def compare_images2():try:face2 = get_face_encoding(image2_path)face3 = get_face_encoding(image3_path)result2 = compare_faces(face2, face3)result_label2.config(text=result2)except Exception as e:result_label2.config(text="发生错误: " + str(e))

创建GUI界面

设置窗口标题和大小。
创建画布来显示图片。
创建标签来显示对比结果。
创建按钮让用户选择图片和进行对比。

# 创建GUI
root = Tk()
root.title("人脸对比")
root.geometry("1000x620")# 创建画布来显示图片
canvas1 = Canvas(root, width=300, height=300, bg='white')
canvas1.pack(side='left', padx=10, pady=10)
canvas2 = Canvas(root, width=300, height=300, bg='white')
canvas2.pack(side='left', padx=10, pady=10)
canvas3 = Canvas(root, width=300, height=300, bg='white')
canvas3.pack(side='left', padx=10, pady=10)# 创建标签来显示结果
result_label1 = Label(root, text="")
result_label1.place(x=300, y=120)
result_label2 = Label(root, text="")
result_label2.place(x=640, y=120)# 创建按钮来选择图片
button1 = Button(root, text="选择第一张图片", command=select_image1)
button1.place(x=100, y=50)
button2 = Button(root, text="选择第二张图片", command=select_image2)
button2.place(x=450, y=50)
button3 = Button(root, text="选择第三张图片", command=select_image3)
button3.place(x=800, y=50)# 创建按钮来对比图片
compare_button1 = Button(root, text="对比图像12", command=compare_images1)
compare_button1.place(x=300, y=80)
compare_button2 = Button(root, text="对比图像23", command=compare_images2)
compare_button2.place(x=640, y=80)

运行GUI主循环

root.mainloop()

运行显示

在这里插入图片描述

全部代码

import cv2
import dlib
import numpy as np
from PIL import Image, ImageTk
from tkinter import filedialog
from tkinter import Tk, Label, Button, Canvas# 加载dlib的人脸识别模型和面部检测器
#使用dlib.get_frontal_face_detector()加载面部检测器,
# 使用dlib.shape_predictor()加载面部特征点预测模型,
# 使用dlib.face_recognition_model_v1()加载人脸识别模型
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")
face_rec = dlib.face_recognition_model_v1("dlib_face_recognition_resnet_model_v1.dat")# 读取图片并转换为灰度图
def get_face_encoding(image_path):img = cv2.imread(image_path)gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)faces = detector(gray)if len(faces) != 1:raise ValueError("图片中检测到多张或没有脸")face = faces[0]shape = predictor(gray, face)face_encoding = np.array(face_rec.compute_face_descriptor(img, shape))return face_encoding# 比较两张人脸
def compare_faces(face1, face2):distance = np.linalg.norm(face1 - face2)if distance < 0.6:return "相同人脸"else:return "不同人脸"# 选择图片并显示结果
def select_image1():global image1_path, image1image1_path = filedialog.askopenfilename()image1 = Image.open(image1_path)image1 = image1.resize((300, 300), Image.LANCZOS)  # 使用Image.LANCZOS替换ANTIALIASphoto1 = ImageTk.PhotoImage(image1)canvas1.create_image(0, 0, anchor='nw', image=photo1)canvas1.image = photo1def select_image2():global image2_path, image2image2_path = filedialog.askopenfilename()image2 = Image.open(image2_path)image2 = image2.resize((300, 300), Image.LANCZOS)  # 使用Image.LANCZOS替换ANTIALIASphoto2 = ImageTk.PhotoImage(image2)canvas2.create_image(0, 0, anchor='nw', image=photo2)canvas2.image = photo2def select_image3():global image3_path, image3image3_path = filedialog.askopenfilename()image3 = Image.open(image3_path)image3 = image3.resize((300, 300), Image.LANCZOS)  # 使用Image.LANCZOS替换ANTIALIASphoto3 = ImageTk.PhotoImage(image3)canvas3.create_image(0, 0, anchor='nw', image=photo3)canvas3.image = photo3def compare_images1():try:face1 = get_face_encoding(image1_path)face2 = get_face_encoding(image2_path)result1 = compare_faces(face1, face2)result_label1.config(text=result1)except Exception as e:result_label1.config(text="发生错误: " + str(e))def compare_images2():try:face2 = get_face_encoding(image2_path)face3 = get_face_encoding(image3_path)result2 = compare_faces(face2, face3)result_label2.config(text=result2)except Exception as e:result_label2.config(text="发生错误: " + str(e))# 创建GUI
root = Tk()
root.title("人脸对比")
root.geometry("1000x620")# 创建画布来显示图片
canvas1 = Canvas(root, width=300, height=300, bg='white')
canvas1.pack(side='left', padx=10, pady=10)
canvas2 = Canvas(root, width=300, height=300, bg='white')
canvas2.pack(side='left', padx=10, pady=10)
canvas3 = Canvas(root, width=300, height=300, bg='white')
canvas3.pack(side='left', padx=10, pady=10)# 创建标签来显示结果
result_label1 = Label(root, text="")
result_label1.place(x=300, y=120)
result_label2 = Label(root, text="")
result_label2.place(x=640, y=120)# 创建按钮来选择图片
button1 = Button(root, text="选择第一张图片", command=select_image1)
button1.place(x=100, y=50)
button2 = Button(root, text="选择第二张图片", command=select_image2)
button2.place(x=450, y=50)
button3 = Button(root, text="选择第三张图片", command=select_image3)
button3.place(x=800, y=50)# 创建按钮来对比图片
compare_button1 = Button(root, text="对比图像12", command=compare_images1)
compare_button1.place(x=300, y=80)
compare_button2 = Button(root, text="对比图像23", command=compare_images2)
compare_button2.place(x=640, y=80)root.mainloop()

相关文章:

人脸匹配——OpenCV

人脸匹配 导入所需的库加载dlib的人脸识别模型和面部检测器读取图片并转换为灰度图比较两张人脸选择图片并显示结果比较图片创建GUI界面运行GUI主循环运行显示全部代码 导入所需的库 cv2&#xff1a;OpenCV库&#xff0c;用于图像处理。 dlib&#xff1a;一个机器学习库&#x…...

韩顺平0基础学java——第22天

p441-459 异常exception 选中代码块&#xff0c;快捷键ctraltt6&#xff0c;即trt-catch 如果进行了异常处理&#xff0c;那么即使出现了异常&#xff0c;但是会继续执行 程序过程中发生的异常事件分为两大类&#xff1a; 异常体系图※ 常见的运行异常&#xff1a;类型转换…...

神经网络介绍及教程案例

神经网络介绍及教程&案例 神经网络&#xff08;Neural Networks&#xff09;是机器学习和人工智能中的一种关键技术&#xff0c;模仿了人类大脑的工作方式&#xff0c;能够处理复杂的数据和任务。以下是神经网络的一些基础介绍&#xff1a; 基本概念 神经元&#xff08;N…...

16个不为人知的资源网站,强烈建议收藏!

整理了16个不为人知的资源网站&#xff0c;涵盖了课程学习、办公技能、娱乐休闲、小说音乐等多种资源&#xff0c;强烈建议收藏&#xff01; #学习网站 1、中国大学MOOC icourse163.org/ 这是一个汇集了国内顶尖大学免费课程资源的平台&#xff0c;众多985工程院校如北京大…...

pandas获取某列最大值的所有数据

第一种方法&#xff1a; 按照某列进行由大到小的排序&#xff0c;然后再进去去重&#xff0c;保留第一个值&#xff0c;最终保留的结果就是最大值的数据 # 由大到小排序 data_frame data_frame.sort_values(bycolumn_a, ascendingFalse)# 按照column_b列去重保留第一条&#…...

App UI 风格展现非凡创意

App UI 风格展现非凡创意...

rocketmq-5.1.2的dleger高可用集群部署

1、背景 原先为5.0.0版本&#xff0c;因检查出有漏洞&#xff0c;升级到5.1.2版本。 【Rocketmq是阿里巴巴在2012年开发的分布式消息中间件&#xff0c;专为万亿级超大规模的消息处理而设计&#xff0c;具有高吞吐量、低延迟、海量堆积、顺序收发等特点。在一定条件下&#xf…...

无线网络与物联网技术[1]之近距离无线通信技术

无线网络与物联网技术 近距离无线通信技术WIFIWi-Fi的协议标准Wi-Fi的信道Wi-Fi技术的术语Wi-Fi的组网技术Ad-hoc模式无线接入点-APAP&#xff1a;FAT AP vs FIT AP Wi-Fi的特点与应用Wi-Fi的安全技术 Bluetooth蓝牙技术概论蓝牙的技术协议蓝牙的组网技术微微网piconet(了解)散…...

Codeforces Round 952 (Div. 4)

题解写到博客园了&#xff0c;懒得复制过来了了&#xff0c;放个链接 https://www.cnblogs.com/yxcblogs/p/18243276 推广一下自己记录的算法编程竞赛模板仓库 GitHub - yxc-s/programming-template: This repository contains C programming templates optimized for competi…...

spark MLlib (DataFrame-based) 中的聚类算法Bisecting K-Means、K-Means、Gaussian Mixture

Bisecting K-Means 核心原理&#xff1a; Bisecting K-Means 是一种层次 K-Means 聚类算法&#xff0c;基于 Steinbach、Karypis 和 Kumar 的论文《A comparison of document clustering techniques》&#xff0c;并对 Spark 环境进行了修改和适应。 该算法通过递归地将数据集…...

天降流量于雀巢?元老品牌如何创新营销策略焕新生

大家最近有看到“南京阿姨手冲咖啡”的视频吗&#xff1f;三条雀巢速溶咖啡入杯&#xff0c;当面加水手冲&#xff0c;十元一份售出&#xff0c;如此朴实的售卖方式迅速在网络上走红。而面对这一波天降的热度&#xff0c;雀巢咖啡迅速做出了回应&#xff0c;品牌组特地去到了阿…...

新疆在线测宽仪配套软件实现的9大功能!

在线测宽仪可应用于各种热轧、冷轧板带材的宽度尺寸检测&#xff0c;材质不限&#xff0c;木质、钢制、铁质、金属、纸质、塑料、橡胶等都可以进行无损非接触式的检测&#xff0c;在各式各样的产线应用中&#xff0c;有些厂家&#xff0c;需要更加详尽完备的分析信息&#xff0…...

考研计组chap3存储系统

目录 一、存储器的基本概念 80 1.按照层次结构 2.按照各种分类 &#xff08;41&#xff09;存储介质 &#xff08;2&#xff09;存取方式 &#xff08;3&#xff09;内存是否可更改 &#xff08;4&#xff09;信息的可保存性 &#xff08;5&#xff09;读出之后data是否…...

杨氏矩阵和杨辉三角的空间复杂度较小的解题思路

文章目录 题目1 杨氏矩阵题目2 杨辉三角 题目1 杨氏矩阵 有一个数字矩阵&#xff0c;矩阵的每行从左到右是递增的&#xff0c;矩阵从上到下是递增的&#xff0c;请编写程序在这样的矩阵中查找某个数字是否存在。 要求&#xff1a;时间复杂度小于O(N); 思路: 我们可以通过题目…...

【第六篇】SpringSecurity的权限管理

一、权限管理的实现 服务端的各种资源要被SpringSecurity的权限管理控制可以通过注解和标签两种方式来处理。 放开了相关的注解后在Controller中就可以使用相关的注解来控制了 JSR250注解 /*** JSR250*/ @Controller @RequestMapping("/user") public class UserC…...

未来工作场所:数字化转型的无限可能

探索技术如何重塑我们的工作环境与协作方式 引言 在21世纪的第三个十年&#xff0c;数字化转型已不再仅仅是科技公司的专利&#xff0c;它如同一股不可阻挡的潮流&#xff0c;深刻地渗透到了每一个行业的血脉之中。从灵活的远程办公模式到工作流程的智能化重构&#xff0c;技术…...

Landsat8的质量评估波段的一个应用

Landsat8一直是遥感界的热门话题。这不仅延续了自1972年以来NASA连续对地观测&#xff0c;而且这颗卫星为科学界带来了一些新的东西——质量评估波段&#xff08;the Quality Assessment (QA) Band&#xff09;。根据USGS Landsat Missions webpage&#xff0c;“QA通过标示哪个…...

OpenZeppelin Ownable合约 怎么使用

文章目录 智能合约的访问控制Ownable合约使用方法 智能合约的访问控制 熟悉OpenZeppelin的智能合约库的开发者都知道这个库已经提供了根据访问等级进行访问限制的选项&#xff0c;其中最常见的就是Ownable合约管理的onlyOwner模式&#xff0c;另一个是OpenZeppelin的Roles库&a…...

vue3框架基本使用(基础指令)

一、响应式数据 1.ref ref可以定义 基本类型的响应式数据&#xff0c; 也可以定义对象类型响应式数据 <template><h1>{{ name }}</h1><button click"test">修改姓名</button> </template><script setup lang"ts"…...

ubuntu20.04设置共享文件夹

ubuntu20.04设置共享文件夹 一&#xff0c;简介二&#xff0c;操作步骤1&#xff0c;设置Windows下的共享目录2&#xff0c;挂载共享文件夹3&#xff0c;测试是否挂载成功 一&#xff0c;简介 在公司电脑上&#xff0c;使用samba设置共享文件夹&#xff0c;IT安全部门权限不通…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

Linux中《基础IO》详细介绍

目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改&#xff0c;实现简单cat命令 输出信息到显示器&#xff0c;你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

智能职业发展系统:AI驱动的职业规划平台技术解析

智能职业发展系统&#xff1a;AI驱动的职业规划平台技术解析 引言&#xff1a;数字时代的职业革命 在当今瞬息万变的就业市场中&#xff0c;传统的职业规划方法已无法满足个人和企业的需求。据统计&#xff0c;全球每年有超过2亿人面临职业转型困境&#xff0c;而企业也因此遭…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...

手动给中文分词和 直接用神经网络RNN做有什么区别

手动分词和基于神经网络&#xff08;如 RNN&#xff09;的自动分词在原理、实现方式和效果上有显著差异&#xff0c;以下是核心对比&#xff1a; 1. 实现原理对比 对比维度手动分词&#xff08;规则 / 词典驱动&#xff09;神经网络 RNN 分词&#xff08;数据驱动&#xff09…...