当前位置: 首页 > news >正文

李宏毅深度学习01——基本概念简介

视频链接

基本概念

Regression(回归):
类似于填空

Classification(分类):
类似于选择

Structure Learning(机器学习):
??

机器学习找对应函数的步骤

1、写出一个带有未知参数的函数

Model(模型):一个函数,比如y = b + w * x1(y是要预测的,x1是已知的)

weight(权重):上述中的w就是权重

bias(偏移):上述中的b就是偏移

2、定义训练数据的损失函数

loss(损失函数):一个函数,输入是模型中的参数 L(b, w),输出的值代表这组b,w好还是不好,值越大,代表b,w越不好

MAE(mean absolute error): 均值绝对误差

MSE(mean square error): 均值方差

Cross-entropy:如果预测值和实际值都是随机分布的,则使用这种方式查看损失值
在这里插入图片描述

label(真实值):真实的值,类似于训练数据

Error surface(误差面):等高线图
在这里插入图片描述

3、Optimization(优化)

找一个w和b,使得Loss结果最小

Gradient Descent(梯度下降)

在这里插入图片描述
在这里插入图片描述

Learning rate:学习速率 n
hyper parameters:超参数 自己设定
在这里插入图片描述

local minima局部最优

global minima全局最优

梯度下降有个问题就是容易导致局部最优?其实局部最优是一个假问题!
在这里插入图片描述
上述说的只是一个参数的情况,实际上多个参数也是一样的做法
在这里插入图片描述
在这里插入图片描述

由线性模型推广至非线性模型

前面的步骤统称训练,实际上都是基于已知数据进行的,我们的目的是要通过这个式子预测新的数据

在这里插入图片描述
在这里插入图片描述
为此,我们应该修改模型,以7天为一个周期来预测

linear models:线性模型,下面如图,就是考虑不同周期对应的线性模型
在这里插入图片描述
model bias:模型偏移
与之前说的bias不一样,这里说的是模型本身的限制导致没办法模拟真实的情况
在这里插入图片描述
所以我们需要一个更复杂的有未知参数的函数来替代线性模型

piecewise linear curves:分段线性曲线
在这里插入图片描述
这里面哪怕红色线不是线性的,而是曲线的,我们也可以通过微分的方式,选取足够多的点将其看成是线性的

在这里插入图片描述
那蓝色线的函数该怎么写出来呢,有一个很出名的函数叫做sigmoid,虽然是曲线,但是很接近蓝色线

sigmoid:S型线段对应的函数

在这里插入图片描述
而蓝色线的函数我们一般将其称作hard sigmoid

通过调整c、b、w这三个值,我们可以得到不同的sigmoid函数,从而逼近不同的蓝色线
在这里插入图片描述
所以上述的红色线可以通过以下公式逼近:
在这里插入图片描述

单个特征推广至多个特征

在这里插入图片描述

改写机器学习的每一步

1、函数式子转矩阵

上述多个特征的式子可以转成用矩阵的方式表示

在这里插入图片描述

在这里插入图片描述
上述已经知道r表示什么,再用a表示sigmoid®
在这里插入图片描述
所以最终式子y可以转成向量的表示方式如下所示
在这里插入图片描述

总结:
transpose:矩阵转置

在这里插入图片描述

在这里插入图片描述
重新定义一下未知参数
在这里插入图片描述

2、重定义Loss函数

在这里插入图片描述

在这里插入图片描述

3、优化

在这里插入图片描述

优化步骤没什么区别,还是用梯度下降,唯一就是参数变了,本质上还是前面w,b两个参数的时候情况是一样的

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
为什么要分一个个Batch?
下次课解释

数据、BatchSize、epoch、update之间的关系如下:
在这里插入图片描述

拓展——模型变型

模型不一定是要用sigmoid,也可以用其他的模型,比如ReLu

在这里插入图片描述
在这里插入图片描述
上述函数统称为激活函数(activation function)

神经网络 OR 深度学习

Neuron:神经元
Neuron Network:神经网络在这里插入图片描述

由于这个名字被搞臭了,所以换了个名字
layer:层
Deep Learning:深度学习
本质上是一个东西
在这里插入图片描述
为什么不把network变胖,而是将其变深???

过拟合

over fitting
在这里插入图片描述

相关文章:

李宏毅深度学习01——基本概念简介

视频链接 基本概念 Regression(回归): 类似于填空 Classification(分类): 类似于选择 Structure Learning(机器学习): ?? 机器学习找对应函数…...

TcpClient 服务器、客户端连接

TcpClient 服务器 TcpListener 搭建tcp服务器的类,基于socket套接字通信的 1 创建服务器对象 TcpListener server new TcpListener(IPAddress.Parse("127.0.0.1"), 3000); 2 开启服务器 设置最大连接数 server.Start(1000); 3 接收客户端的链接,只能…...

13大最佳工程项目管理系统软件盘点

国内外主流的13款工程项目管理系统软件:Worktile、中建软件、泛微建筑项目管理软件、LiquidPlanner、Wrike、建文软件、广联达、Microsoft Project、泛普软件、Procore、Buildertrend、Fieldwire、Autodesk Construction Cloud。 在快速变化的工程领域,有…...

SpringMVC:拦截器(Interceptor)

1. 简介 拦截器(Interceptor)类似于过滤器(Filter) Spring MVC的拦截器作用是在请求到达控制器之前或之后进行拦截,可以对请求和响应进行一些特定的处理。拦截器可以用于很多场景下: 1. 登录验证&#xf…...

【Python】selenium使用find_element时解决【NoSuchWindowException】问题的方法

NoSuchWindowException 是 Selenium WebDriver 中的一种异常,当尝试切换到一个不存在的窗口时,或者在尝试获取窗口句柄时窗口已经关闭或不存在,就会抛出这个异常。 以下是一些解决 NoSuchWindowException 的常见方法: 检查窗口是…...

PTA:7-188 水仙花数

作者 王秀秀 单位 山东交通学院 任务描述 本关任务:输出100到999之间的所有的“水仙花数”。所谓的“水仙花数”是指一个3位数,其各位数字立方和等于该数本身。 例如,153是一个水仙花数,因为 15313 53 33 提示 关键在于对一…...

HTML静态网页成品作业(HTML+CSS+JS)—— 美食企业曹氏鸭脖介绍网页(4个页面)

🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,使用Javacsript代码实现 图片轮播切换,共有4个页面。 二、…...

SCI二区|鲸鱼优化算法(WOA)原理及实现【附完整Matlab代码】

目录 1.背景2.算法原理2.1算法思想 3.结果展示4.参考文献5.代码获取 1.背景 2016年,S Mirjalili受到自然界座头鲸社会行为启发,提出了鲸鱼优化算法(Whale Optimization Algorithm, WOA)。 2.算法原理 WOA模拟了座头鲸的社会行为…...

人脸匹配——OpenCV

人脸匹配 导入所需的库加载dlib的人脸识别模型和面部检测器读取图片并转换为灰度图比较两张人脸选择图片并显示结果比较图片创建GUI界面运行GUI主循环运行显示全部代码 导入所需的库 cv2:OpenCV库,用于图像处理。 dlib:一个机器学习库&#x…...

韩顺平0基础学java——第22天

p441-459 异常exception 选中代码块,快捷键ctraltt6,即trt-catch 如果进行了异常处理,那么即使出现了异常,但是会继续执行 程序过程中发生的异常事件分为两大类: 异常体系图※ 常见的运行异常:类型转换…...

神经网络介绍及教程案例

神经网络介绍及教程&案例 神经网络(Neural Networks)是机器学习和人工智能中的一种关键技术,模仿了人类大脑的工作方式,能够处理复杂的数据和任务。以下是神经网络的一些基础介绍: 基本概念 神经元(N…...

16个不为人知的资源网站,强烈建议收藏!

整理了16个不为人知的资源网站,涵盖了课程学习、办公技能、娱乐休闲、小说音乐等多种资源,强烈建议收藏! #学习网站 1、中国大学MOOC icourse163.org/ 这是一个汇集了国内顶尖大学免费课程资源的平台,众多985工程院校如北京大…...

pandas获取某列最大值的所有数据

第一种方法: 按照某列进行由大到小的排序,然后再进去去重,保留第一个值,最终保留的结果就是最大值的数据 # 由大到小排序 data_frame data_frame.sort_values(bycolumn_a, ascendingFalse)# 按照column_b列去重保留第一条&#…...

App UI 风格展现非凡创意

App UI 风格展现非凡创意...

rocketmq-5.1.2的dleger高可用集群部署

1、背景 原先为5.0.0版本,因检查出有漏洞,升级到5.1.2版本。 【Rocketmq是阿里巴巴在2012年开发的分布式消息中间件,专为万亿级超大规模的消息处理而设计,具有高吞吐量、低延迟、海量堆积、顺序收发等特点。在一定条件下&#xf…...

无线网络与物联网技术[1]之近距离无线通信技术

无线网络与物联网技术 近距离无线通信技术WIFIWi-Fi的协议标准Wi-Fi的信道Wi-Fi技术的术语Wi-Fi的组网技术Ad-hoc模式无线接入点-APAP:FAT AP vs FIT AP Wi-Fi的特点与应用Wi-Fi的安全技术 Bluetooth蓝牙技术概论蓝牙的技术协议蓝牙的组网技术微微网piconet(了解)散…...

Codeforces Round 952 (Div. 4)

题解写到博客园了,懒得复制过来了了,放个链接 https://www.cnblogs.com/yxcblogs/p/18243276 推广一下自己记录的算法编程竞赛模板仓库 GitHub - yxc-s/programming-template: This repository contains C programming templates optimized for competi…...

spark MLlib (DataFrame-based) 中的聚类算法Bisecting K-Means、K-Means、Gaussian Mixture

Bisecting K-Means 核心原理: Bisecting K-Means 是一种层次 K-Means 聚类算法,基于 Steinbach、Karypis 和 Kumar 的论文《A comparison of document clustering techniques》,并对 Spark 环境进行了修改和适应。 该算法通过递归地将数据集…...

天降流量于雀巢?元老品牌如何创新营销策略焕新生

大家最近有看到“南京阿姨手冲咖啡”的视频吗?三条雀巢速溶咖啡入杯,当面加水手冲,十元一份售出,如此朴实的售卖方式迅速在网络上走红。而面对这一波天降的热度,雀巢咖啡迅速做出了回应,品牌组特地去到了阿…...

新疆在线测宽仪配套软件实现的9大功能!

在线测宽仪可应用于各种热轧、冷轧板带材的宽度尺寸检测,材质不限,木质、钢制、铁质、金属、纸质、塑料、橡胶等都可以进行无损非接触式的检测,在各式各样的产线应用中,有些厂家,需要更加详尽完备的分析信息&#xff0…...

华为云AI开发平台ModelArts

华为云ModelArts:重塑AI开发流程的“智能引擎”与“创新加速器”! 在人工智能浪潮席卷全球的2025年,企业拥抱AI的意愿空前高涨,但技术门槛高、流程复杂、资源投入巨大的现实,却让许多创新构想止步于实验室。数据科学家…...

【Python】 -- 趣味代码 - 小恐龙游戏

文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

python/java环境配置

环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...