在有向无环图(DAG)中实现拓扑排序与最短路径和最长路径算法
有向无环图(DAG)是一类非常重要的图结构,广泛应用于任务调度、数据依赖分析等领域。本文将介绍如何在DAG中实现拓扑排序、单源最短路径和单源最长路径算法,并提供完整的Java代码示例。
图结构定义
首先,我们定义一个简单的图结构,包括节点和边。使用Java代码如下:
import java.util.*;class Graph {final List<List<Edge>> adjList;public Graph(int vertices) {adjList = new ArrayList<>(vertices);for (int i = 0; i < vertices; i++) {adjList.add(new ArrayList<>());}}public void addEdge(int from, int to, int weight) {adjList.get(from).add(new Edge(from, to, weight));}public List<Edge> getEdges(int vertex) {return adjList.get(vertex);}public int size() {return adjList.size();}static class Edge {final int from;final int to;final int weight;Edge(int from, int to, int weight) {this.from = from;this.to = to;this.weight = weight;}@Overridepublic String toString() {return String.format("%d - %d: %d", from, to, weight);}}
}
拓扑排序算法
拓扑排序是DAG中非常基础且重要的算法。它为每个节点排列顺序,使得所有有向边从前往后指向。这里我们介绍两种拓扑排序算法:基于DFS和基于BFS的算法。
基于DFS的拓扑排序
import java.util.*;class TopologicalSort {public static List<Integer> sortDFS(Graph graph) {boolean[] visited = new boolean[graph.size()];Stack<Integer> stack = new Stack<>();for (int i = 0; i < graph.size(); i++) {if (!visited[i]) {topologicalSortUtil(graph, i, visited, stack);}}List<Integer> topoOrder = new ArrayList<>();while (!stack.isEmpty()) {topoOrder.add(stack.pop());}return topoOrder;}private static void topologicalSortUtil(Graph graph, int v, boolean[] visited, Stack<Integer> stack) {visited[v] = true;for (Graph.Edge edge : graph.getEdges(v)) {if (!visited[edge.to]) {topologicalSortUtil(graph, edge.to, visited, stack);}}stack.push(v);}
}
基于BFS的拓扑排序
import java.util.*;class TopologicalSort {public static List<Integer> sortBFS(Graph graph) {int[] inDegree = new int[graph.size()];for (List<Graph.Edge> edges : graph.adjList) {for (Graph.Edge edge : edges) {inDegree[edge.to]++;}}Queue<Integer> queue = new LinkedList<>();for (int i = 0; i < graph.size(); i++) {if (inDegree[i] == 0) {queue.offer(i);}}List<Integer> topoOrder = new ArrayList<>();while (!queue.isEmpty()) {int v = queue.poll();topoOrder.add(v);for (Graph.Edge edge : graph.getEdges(v)) {if (--inDegree[edge.to] == 0) {queue.offer(edge.to);}}}return topoOrder.size() == graph.size() ? topoOrder : new ArrayList<>(); // Check for cycle}
}
比较两种拓扑排序算法
-
DFS拓扑排序:
- 优点:实现简单,递归方式直观,适用于大部分编程场景。
- 缺点:需要使用额外的栈空间,可能导致栈溢出问题。
-
BFS拓扑排序(Kahn’s Algorithm):
- 优点:使用队列实现,避免了递归带来的栈空间问题。能有效检测图中的环。
- 缺点:实现稍微复杂,需要额外的入度数组。
基于拓扑排序的DAG单源最短路径算法
DAG中的单源最短路径算法可以利用拓扑排序来实现。由于DAG中不存在环,可以按照拓扑顺序依次松弛每个节点的边,从而实现单源最短路径。
import java.util.*;class ShortestPathDAG {public static int[] shortestPath(Graph graph, int start) {List<Integer> topoOrder = TopologicalSort.sortDFS(graph);int[] distTo = new int[graph.size()];Arrays.fill(distTo, Integer.MAX_VALUE);distTo[start] = 0;for (int v : topoOrder) {if (distTo[v] != Integer.MAX_VALUE) {for (Graph.Edge edge : graph.getEdges(v)) {if (distTo[v] + edge.weight < distTo[edge.to]) {distTo[edge.to] = distTo[v] + edge.weight;}}}}return distTo;}
}
最短路径算法与Dijkstra算法的优劣性比较
-
优点:
- 拓扑排序+最短路径算法在DAG中效率高,可以在线性时间内解决最短路径问题。
- 对于DAG来说,算法实现相对简单。
-
缺点:
- 仅适用于DAG,对于有环图无效。
- Dijkstra算法适用于任意有向图和无向图,且能处理正权边的最短路径问题。
基于拓扑排序的DAG单源最长路径算法
方法1:使用图的副本和最短路径算法
import java.util.*;class LongestPathDAG {public static int[] longestPathWithNegation(Graph graph, int start) {Graph negatedGraph = new Graph(graph.size());for (int i = 0; i < graph.size(); i++) {for (Graph.Edge edge : graph.getEdges(i)) {negatedGraph.addEdge(edge.from, edge.to, -edge.weight);}}int[] negatedDistances = ShortestPathDAG.shortestPath(negatedGraph, start);int[] distances = new int[graph.size()];for (int i = 0; i < negatedDistances.length; i++) {distances[i] = -negatedDistances[i];}return distances;}
}
方法2:直接修改最短路径算法
import java.util.*;class LongestPathDAG {public static int[] longestPathDirect(Graph graph, int start) {List<Integer> topoOrder = TopologicalSort.sortDFS(graph);int[] distTo = new int[graph.size()];Arrays.fill(distTo, Integer.MIN_VALUE);distTo[start] = 0;for (int v : topoOrder) {if (distTo[v] != Integer.MIN_VALUE) {for (Graph.Edge edge : graph.getEdges(v)) {if (distTo[v] + edge.weight > distTo[edge.to]) {distTo[edge.to] = distTo[v] + edge.weight;}}}}return distTo;}
}
比较两种单源最长路径算法
-
使用图的副本和最短路径算法:
- 优点:利用现有的最短路径算法作为黑箱,方便直接调用。
- 缺点:需要额外创建图的副本,增加了时间和空间复杂度。
-
直接修改最短路径算法:
- 优点:无需额外的图副本,算法效率更高,直接适用于最长路径问题。
- 缺点:实现稍微复杂,需要对算法进行适当调整。
主类(用于测试)
public class Main {public static void main(String[] args) {Graph graph = new Graph(6);graph.addEdge(0, 1, 5);graph.addEdge(0, 2, 3);graph.addEdge(1, 3, 6);graph.addEdge(1, 2, 2);graph.addEdge(2, 4, 4);graph.addEdge(2, 5, 2);graph.addEdge(2, 3, 7);graph.addEdge(3, 4, -1);graph.addEdge(3, 5, 1);graph.addEdge(4, 5, -2);List<Integer> topoOrderDFS = TopologicalSort.sortDFS(graph);System.out.println("Topological Sort (DFS): " + topoOrderDFS);List<Integer> topoOrderBFS = TopologicalSort.sortBFS(graph);System.out.println("Topological Sort (BFS): " + topoOrderBFS);int[] shortestPaths = ShortestPathDAG.shortestPath(graph, 0);System.out.println("Shortest Paths from vertex 0: " + Arrays.toString(shortestPaths));int[] longestPathsNegation = LongestPathDAG.longestPathWithNegation(graph, 0);System.out.println("Longest Paths from vertex 0 (with negation): " + Arrays.toString(longestPathsNegation));int[] longestPathsDirect = LongestPathDAG.longestPathDirect(graph, 0);System.out.println("Longest Paths from vertex 0 (direct method): " + Arrays.toString(longestPathsDirect));}
}
总结
本文介绍了在有向无环图(DAG)中实现拓扑排序、单源最短路径和单源最长路径算法的详细步骤和Java代码。通过比较不同的拓扑排序方法和最长路径算法,我们可以根据实际需求选择最适合的实现方案。希望这些内容能帮助读者更好地理解和应用DAG相关的算法。
相关文章:

在有向无环图(DAG)中实现拓扑排序与最短路径和最长路径算法
有向无环图(DAG)是一类非常重要的图结构,广泛应用于任务调度、数据依赖分析等领域。本文将介绍如何在DAG中实现拓扑排序、单源最短路径和单源最长路径算法,并提供完整的Java代码示例。 图结构定义 首先,我们定义一个…...

SQLServer按照年龄段进行分组查询数据
1.按照年龄段对数据进行分组, 将人群分为:青年,中年,老年三种类型,人群类型加上其他分组字段如:性别,进行多条件分组,统计各个年龄段多少人 Select case sex when 1 then ‘男’ when 2 then …...

开放式耳机哪个品牌质量比较好?2024高性价比机型推荐!
随着音乐技术的不断发展,开放式耳机已成为音乐发烧友们的另外一种选择。从最初的简单音质,到如今的高清解析,开放式耳机不断进化升级。音质纯净,佩戴舒适,无论是街头漫步还是家中放松时候,都能带给你身临其…...

Blender骨骼创建
骨骼系统 建立 使用Shift A添加骨骼或在添加|骨架中添加一段骨骼 骨骼的三种模式 -物体模式:做动画,摆人物pose时在该模式 -编辑模式:进行骨骼搭建(选择一段骨骼,然后按E挤出一段骨骼并进行调整) -姿…...

DevExpress WPF中文教程:Grid - 如何完成列和编辑器配置(设计时)?
DevExpress WPF拥有120个控件和库,将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpress WPF能创建有着强大互动功能的XAML基础应用程序,这些应用程序专注于当代客户的需求和构建未来新一代支持触摸的解决方案。 无论是Office办公软件…...

高考完的三个月想自学点编程,有没有什么建议
👆点击关注 获取更多编程干货👆 对于刚刚完成高考的学生来说,无论未来是否选择计算机科学作为专业方向,自学编程技能是一项非常有价值的投资,掌握编程知识能够帮助同学们为将来的学习和科研 实践奠定一个基础。 随着…...

运维开发(DevOps):加速软件交付的关键方法
1. 什么是运维开发 运维开发(DevOps)是将软件开发(Development)与信息技术运维(Operations)的流程整合在一起的实践方法。DevOps的目标是通过增强开发和运维团队之间的协作,提高软件产品的发布…...

Vue前端环境搭建:从四个方面、五个方面、六个方面和七个方面深度解析
Vue前端环境搭建:从四个方面、五个方面、六个方面和七个方面深度解析 在构建Vue.js项目时,搭建一个稳定且高效的前端环境至关重要。这不仅关乎项目的顺利推进,更直接影响开发者的效率和代码质量。本文将从四个方面、五个方面、六个方面和七个…...

农业领域科技查新点提炼方法附案例!
农业学科是人类通过改造和利用生物有机体(植物、动物、微生物等)及各种自然资源(光、热、水、土壤等)生产出人类需求的农产品的过程,人类在这一过程中所积累的科学原理、技术、工艺和技能,统称为农业科学技术,该领域具有研究范围广、综合性强…...

【Bazel入门与精通】 rules之属性
https://bazel.build/extending/rules?hlzh-cn#attributes Attributes An attribute is a rule argument. Attributes can provide specific values to a target’s implementation, or they can refer to other targets, creating a graph of dependencies. Rule-specifi…...

Elementor无需第三方插件实现高级下拉菜单/巨型菜单
使用新的嵌套功能创建美观的菜单和大型菜单。巨型菜单是具有复杂导航结构和独特设计的网站的理想选择。 Elementor-设置-特性-Menu启用 之后再去前端编辑器设计即可,就会有一个新的menu菜单模块了。 这个菜单的下拉则是通过Elementor直接来设计,也就以为…...

【数学】什么是傅里叶变换?什么是离散傅里叶变换?什么是拉普拉斯变换?
文章目录 什么是傅里叶变换?什么是离散傅里叶变换?什么是拉普拉斯变换?背景公式示例题目详细讲解Python代码求解实际生活中的例子 什么是线性时不变系统线性性(Linearity)时不变性(Time-Invariance…...

opencv安装笔记 各种平台
目录 python安装opencv-python c 麒麟arm系统安装和用法 python安装opencv-python pypi上搜索 Search results PyPI 现在安装是一个版本,大于3.6都可以安装 c 麒麟arm系统安装和用法 参考: ffmpeg rknn麒麟系统 安装 opencv_ffmpeg4 解码示例-CSDN…...

前端开发中的热更新原理
一、什么是热更新 热更新(Hot Module Replacement,HMR)是一种在前端开发中极为重要的技术。它允许开发者在不重新加载整个页面的情况下,实时更新应用程序中的某些模块。简单来说,热更新能让你在开发过程中即时看到代码…...

unix环境高级编程第2版:深入探索UNIX编程的奥秘
unix环境高级编程第2版:深入探索UNIX编程的奥秘 在数字世界的浩瀚海洋中,UNIX环境以其稳定、高效和灵活的特性,一直备受程序员们的青睐。而《unix环境高级编程第2版》这本书,无疑是探索UNIX编程奥秘的绝佳指南。接下来࿰…...

力扣42 接雨水
听说字节每人都会接雨水,我也要会哈哈哈 数据结构:数组 算法:核心是计算这一列接到多少雨水,它取决于它左边的最大值和右边的最大值,如下图第三根柱子能接到的雨水应该是第一根柱子高度和第五根柱子高度的最小值减去第…...

【代码随想录】【算法训练营】【第35天】[134]加油站 [135]分发糖果 [860]柠檬水找零 [406]根据身高重建队列
前言 思路及算法思维,指路 代码随想录。 题目来自 LeetCode。 day 35,连休两天~ 题目详情 [134] 加油站 题目描述 134 加油站 解题思路 前提:数组 思路:全局贪心算法:最小累加剩余汽油为负数,说明…...

Talk|新加坡国立大学贾鑫宇:适用于高自由度机器人的运动控制器
本期为TechBeat人工智能社区第600期线上Talk。 北京时间6月13日(周四)20:00,新加坡国立大学博士生—贾鑫宇的Talk已经准时在TechBeat人工智能社区开播! 他与大家分享的主题是: “适用于高自由度机器人的运动控制器”,向大家系统地介绍了如何通…...

【npm】console工具(含胶囊,表格,gif图片)
这是一款控制台花样输出工具 相对丰富的输出方式 文本输出属性值输出胶囊样式输出表格输出图片输出(含动图) 安装 npm install v_aot引用 import v_aot from "v_aot";字段说明 字段类型属性字符串值字符串类型default 、 primary 、 suc…...

OpenCV读取图片
import cv2 as cv # 读取图像 image cv.imread(F:\\mytupian\\xihuduanqiao.jpg) # 创建窗口 cv.namedWindow(image, cv.WINDOW_NORMAL) #显示图像后,允许用户随意调整窗口大小 # 显示图像 cv.imshow(image, image) cv.waitKey(0)import cv2 as cv srccv.imread(…...

HBase中的CRUD
Table接口:负责表数据的基本操作。 Admin类:负责管理建表、删表、该表等元数据操作的接口。 1、Put方法 1.1、了解put方法之前,必须知道的相关知识。 在HBase中有一个理念:所有的数据皆为bytes。因此在HBase中所有的数据最终都…...

C/C++学习笔记 C语言中的\0以及查找字符串中字符出现的频率
在此示例中,计算了字符串对象中字符的频率。 为此,使用size()函数查找字符串对象的长度。然后for 循环迭代直到字符串末尾。 在每次迭代中,检查字符是否出现,如果发现,则计数增加 1。 示例 1 #include <iostream&g…...

在C#中,有多种方式可以实现每天在指定的时间清空数据库数据。下面列出几种常用的方法,并提供简要的实现思路:
在C#中,实现每天在指定时间清空数据库数据的需求,可以通过多种方式来完成。下面列举了几种常用的方法: 方式一:使用 Task 和 Timer 这种方法利用 System.Threading.Timer 类来定时执行清空数据库的操作。 using System; using …...

深入理解java设计模式之单例模式
目录 概述单例模式是什么单例模式的使用场景单例模式的优缺点单例模式的几种实现方式饿汉式懒汉式双重检查锁定机制静态内部类枚举使用容器几种可能破坏单例类的方法多线程环境下的竞争条件使用反射机制使用序列化多个类加载器概述 单例模式是什么 定义:单例模式确保一个类在…...

程序员自由创业周记#36:Gap Year
程序员自由创业周记#36:Gap Year 一整年 刚过去的一周,度过了我31周岁的生日,距离结束上一份工作,刚好一年。一年过得好快,犹记得刚失业那会的迷茫,第一个月的纠结,是继续打工还是自己当“老板…...

Java 类与对象 -- Java 语言的类与对象、构造器、static、final、包和 JAR
大家好,我是栗筝i,这篇文章是我的 “栗筝i 的 Java 技术栈” 专栏的第 006 篇文章,在 “栗筝i 的 Java 技术栈” 这个专栏中我会持续为大家更新 Java 技术相关全套技术栈内容。专栏的主要目标是已经有一定 Java 开发经验,并希望进…...

MTK平台纯色背景抑制
MTK中有两个机制可以抑制纯色背景的亮度,分别是Main target、Histogram。 Main target的纯色背景亮度机制原理大概如下: 将图像分成64*48块,分别统计每一块的亮度Y。 但对于纯色背景时,如果仍然使用Luma来计算,容易造…...

Linux iptables使用详解
一、Linux系统下使用iptables 在Linux中,常用的防火墙工具是iptables。以下是一些基本的iptables命令,用于配置防火墙规则。 查看现有的iptables规则: sudo iptables -L 清除所有现有的规则(慎用,可能导致服务不可用…...

算法02 递归算法及其相关问题
递归 在编程中,我们把函数直接或者间接调用自身的过程叫做递归。 递归处理问题的过程是:通常把一个大型的复杂问题,转变成一个与原问题类似的,规模更小的问题来进行求解。 递归的三大要素 函数的参数。在用递归解决问题时&…...

三个pdf工具和浏览软件(pdftk,muppdf,epdfview)
安装pdftk pdftk是一款功能强大的PDF处理工具,主要用于对PDF文件进行各种操作。它提供了丰富的功能,包括但不限于合并、拆分、旋转、加密、解密、添加水印、从PDF文档中解出附件等。pdftk分为图形界面版本和命令行版本,适用于不同的用户需求…...