当前位置: 首页 > news >正文

基于 Transformer 的大语言模型

语言建模作为语言模型(LMs)的基本功能,涉及对单词序列的建模以及预测后续单词的分布。

近年来,研究人员发现,扩大语言模型的规模不仅增强了它们的语言建模能力,而且还产生了处理传统NLP任务之外更复杂任务的新兴能力。

这些扩大规模的语言模型被称为大型语言模型(LLMs)。

主流的LLMs基于Transformer架构设计

具体来说,一个典型的Transformer架构由多个堆叠的Transformer块组成。

图片

通常,一个Transformer块由一个多头自注意力(MHSA)模块、一个前馈网络(FFN)和一个层归一化(LN)操作组成。

对于每个块,它接收前一个块的输出特征作为输入,并通过每个子模块传递特征以获得输出。

特别地,在第一个块之前,使用分词器将原始输入句子转换为一系列标记,随后的嵌入层用于将标记转换为输入特征。

然后,将额外的位置嵌入添加到输入特征中,以编码每个输入标记的顺序。

Transformer架构的核心概念是自注意力机制,它在MHSA模块中采用。具体来说,表示输入特征为X = [x1, x2, ..., xn],MHSA模块对它们进行线性投影并获得一组查询Q、键K和值V,如公式所示:

图片

其中WQi、WKi和WVi分别是第i个头的投影矩阵。

然后自注意力操作应用于每组(Qi, Ki, Vi)并得到第i个头的特征Zi,如公式所示:

图片

其中dk是查询(键)的维度。

注意,自注意力操作包含矩阵乘法操作,其计算复杂度是对输入长度的二次方。最后,MHSA模块将所有注意力头的特征连接起来,并通过线性投影形成其输出Z,如公式所示:

图片

其中WO是投影矩阵。

可以看到,自注意力机制允许模型识别不同输入部分的重要性,无论距离如何,并且可以捕捉输入句子中的长距离依赖和复杂关系。

Transformer块中的另一个重要模块是FFN。

通常,FFN位于MHSA模块之后,由两个带有非线性激活函数的线性变换层组成。它接收MHSA模块的输出特征X,如公式所示:

图片

其中W1和W2表示两个线性层的权重矩阵,σ(·)表示激活函数。

本文翻译自清华大学最新成果论文:《A Survey on Efficient Inference for Large Language Models 》,https://arxiv.org/pdf/2404.14294。


更多关于大语言模型的介绍,可以查看《Transformer最后一公里》专栏。

相关文章:

基于 Transformer 的大语言模型

语言建模作为语言模型(LMs)的基本功能,涉及对单词序列的建模以及预测后续单词的分布。 近年来,研究人员发现,扩大语言模型的规模不仅增强了它们的语言建模能力,而且还产生了处理传统NLP任务之外更复杂任务…...

证照之星是一款很受欢迎的证件照制作软件

证照之星是一款很受欢迎的证件照制作软件,证照之星可以为用户提供“照片旋转、裁切、调色、背景处理”等功能,满足用户对证件照制作的基本需求。本站证照之星下载专题为大家提供了证照之星电脑版、安卓版、个人免费版等多个版本客户端资源,此…...

不定时更新 解决无法访问GitHub github.com 打不开 dns访问加速

1 修改hosts Windows 10为例,‪文件C:\Windows\System32\drivers\etc\hosts 管理员打开记事本来修改 文件-打开-“C:\Windows\System32\drivers\etc\hosts” 20.205.243.168 api.github.com 185.199.108.154 github.githubassets.com 185.199.108.133 raw.githubusercontent.…...

单向环形链表的创建与判断链表是否有环

单向环形链表的创建与单向链表的不同在于,最后一个节点的next需要指向头结点; 判断链表是否带环,只需要使用两个指针,一个步长为1,一个步长为2,环状链表这两个指针总会相遇。 如下示例代码: l…...

JVM堆栈的区别、分配内存与并发安全问题、对象定位

一、堆和栈的区别 堆(Heap)和栈(Stack)是两种基本的数据结构,它们在内存管理、程序执行流程控制等方面扮演着重要角色。在编程语言尤其是Java这样的高级语言环境中,堆和栈的概念被用来描述程序运行时的内存…...

Python教程:机器学习 - 百分位数(4)

什么是百分位数? 统计学中使用百分位数(Percentiles)为您提供一个数字,该数字描述了给定百分比值小于的值。 例如:假设我们有一个数组,包含住在一条街上的人的年龄。 ages [5,31,43,48,50,41,7,11,15,3…...

数据结构习题(快期末了)

一个数据结构是由一个逻辑结构和这个逻辑结构上的一个基本运算集构成的整体。 从逻辑关系上讲,数据结构主要分为线性结构和非线性结构两类。 数据的存储结构是数据的逻辑结构的存储映像。 数据的物理结构是指数据在计算机内实际的存储形式。 算法是对解题方法和…...

Http协议:Http缓存

文章目录 Cookie和Session缓存有效性检查整体流程总结Cookie和Session Cookie 客户端的缓存 Session 服务端的缓存,存储服务器与客户端一次会话的过程中的数据/资源 两者区别 是服务端与客户端的不同需求造成的 有效期 Cookie的有效期很长,Session的较短 原因:服务…...

idea插件开发之hello idea plugin

写在前面 最近一直想研究下自定义idea插件的内容,这样如果是想要什么插件,但又一时找不到合适的,就可以自己来搞啦!这不终于有时间来研究下,但过程可谓是一波三折,再一次切身体验了下万事开头难。那么&…...

Sm4【国密4加密解密】

当我们开发金融、国企、政府信息系统时,不仅要符合网络安全的等保二级、等保三级,还要求符合国密的安全要求,等保测评已经实行很久了,而国密测评近两年才刚开始。那什么是密码/国密?什么是密评?本文就关于密…...

git如果将多次提交压缩成一次

将N个提交压缩到单个提交中有两种方式: git reset git reset的本意是版本回退,回退时可以选择保留commit提交。我们基于git reset的作用,结合新建分支,可以实现多次commit提交的合并。这个不需要vim编辑,很少有冲突。…...

android用Retrofit进行网络请求和解析

Retrofit 的原理 Retrofit的核心原理包括动态代理与Service Method的构建、注解解析与请求配置、网络请求执行与响应处理等。它是一个类型安全的HTTP客户端,用于Android和Java平台,通过将HTTP API转化为Java接口的方式,简化了网络请求的编写…...

list容器的基本使用

目录 前言一,list的介绍二,list的基本使用2.1 list的构造2.2 list迭代器的使用2.3 list的头插,头删,尾插和尾删2.4 list的插入和删除2.5 list 的 resize/swap/clear 前言 list中的接口比较多,与string和vector类似&am…...

34万汉语词语成语反义词ACCESS\EXCEL数据库

反义词就是两个意思相反的词,包括:绝对反义词和相对反义词。分为成对的意义相反、互相对立的词。如:真——假,动——静,拥护——反对。这类反义词所表达的概念意义互相排斥。或成对的经常处于并举、对待位置的词。如&a…...

yum方式更新Jenkins

目的 使用yum方式更新Jenkins。 步骤 查看最新可用版本 $ yum list jenkins Last metadata expiration check: 0:03:44 ago on Fri Jun 14 06:10:01 2024. Installed Packages jenkins.noarch 2.452.1-1.1 jenkins Available Pa…...

欢乐钓鱼大师保姆级教程,云手机辅助攻略解析!

在这份攻略中,我们将为大家详细介绍如何在《欢乐钓鱼大师》中快速提升钓鱼技能和游戏进展,避免常见的新手误区和不必要的资源浪费。无论是钓鱼点的选择、装备的合理使用还是技能的优化,我们都会一一为您详细解析,帮助您成为一名优…...

数据结构:手撕代码——顺序表

目录 1.线性表 2.顺序表 2.1顺序表的概念 2.2动态顺序表实现 2.2-1 动态顺序表实现思路 2.2-2 动态顺序表的初始化 2.2-3动态顺序表的插入 检查空间 尾插 头插 中间插入 2.2-4 动态顺序表的删除 尾删 头删 中间删除 2.2. 5 动态顺序表查找与打印、销毁 查找 …...

jenkins使用注意问题

1.在编写流水线时并不知道当前处在哪个目录,导致名使用不当,以及文件位置不清楚 流水线任务默认路径是,test4_mvn为jenkins任务名 [Pipeline] sh (hide)pwd /var/jenkins_home/workspace/test4_mvn maven任务也是,看来是一样的…...

Kaggle -- Titanic - Machine Learning from Disaster

新手kaggle之旅:1 . 泰坦尼克号 使用一个简单的决策树进行模型构建,达到75.8%的准确率(有点低,但是刚开始) 完整代码如下: import pandas as pd import numpy as npdf pd.read_csv("train.csv&quo…...

蓝牙音频解码芯片TD5163介绍,支持红外遥控—拓达半导体

蓝牙芯片TD5163A是一颗支持红外遥控、FM功能和IIS音频输出的蓝牙音频解码芯片,此颗芯片的亮点在于同时支持真立体声&单声道、TWS功能、PWM、音乐频谱和串口AT指令控制等功能,芯片在支持蓝牙无损音乐播放的同时,还支持简单明了的串口发送A…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...

docker详细操作--未完待续

docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

【Oracle APEX开发小技巧12】

有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

【JavaEE】-- HTTP

1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...