四叉树和KD树
1. 简介
四叉树和KD树都是用于空间数据索引和检索的树状数据结构。它们通过将空间递归地划分为更小的区域,并存储每个区域内的点,来实现快速搜索和范围查询。
2. 四叉树
2.1 定义
四叉树是一种树状数据结构,它将二维空间递归地划分为四个相等的子区域,直到每个子区域只包含一个点或为空。每个节点代表一个矩形区域,并存储该区域内的所有点。
2.2 构建
构建四叉树的过程如下:
- 将整个空间划分为四个相等的子区域。
- 将每个点分配到相应的子区域。
- 递归地对每个子区域进行步骤 1 和 2,直到每个子区域只包含一个点或为空。
2.3 搜索
搜索四叉树的过程如下:
- 从根节点开始,检查当前节点的区域是否包含目标点。
- 如果包含,则递归地搜索该节点的四个子节点。
- 如果不包含,则搜索失败。
2.4 范围查询
范围查询是指查找所有位于给定矩形区域内的点。搜索过程与搜索单个点类似,但需要遍历所有与查询区域相交的节点。
2.5 Kotlin 代码演示
data class Point(val x: Double, val y: Double)data class Rectangle(val x: Double, val y: Double, val width: Double, val height: Double) {fun contains(point: Point): Boolean {return point.x >= x && point.x <= x + width && point.y >= y && point.y <= y + height}fun intersects(other: Rectangle): Boolean {return !(other.x + other.width < x ||other.x > x + width ||other.y + other.height < y ||other.y > y + height)}
}class QuadTree(val boundary: Rectangle, val capacity: Int = 1) {private var points: MutableList<Point> = mutableListOf()private var children: Array<QuadTree?> = arrayOfNulls(4)fun insert(point: Point): Boolean {if (!boundary.contains(point)) {return false}if (points.size < capacity) {points.add(point)return true}if (children[0] == null) {subdivide()}for (i in 0..3) {if (children[i]!!.insert(point)) {return true}}return false}private fun subdivide() {val xMid = boundary.x + boundary.width / 2val yMid = boundary.y + boundary.height / 2children[0] = QuadTree(Rectangle(boundary.x, boundary.y, xMid, yMid), capacity)children[1] = QuadTree(Rectangle(xMid, boundary.y, boundary.x + boundary.width, yMid), capacity)children[2] = QuadTree(Rectangle(boundary.x, yMid, xMid, boundary.y + boundary.height), capacity)children[3] = QuadTree(Rectangle(xMid, yMid, boundary.x + boundary.width, boundary.y + boundary.height), capacity)for (point in points) {for (i in 0..3) {if (children[i]!!.insert(point)) {break}}}points.clear()}fun query(range: Rectangle): List<Point> {val foundPoints = mutableListOf<Point>()if (!boundary.intersects(range)) {return foundPoints}for (point in points) {if (range.contains(point)) {foundPoints.add(point)}}if (children[0] != null) {for (child in children) {if (child != null) {foundPoints.addAll(child.query(range))}}}return foundPoints}
}fun main() {val boundary = Rectangle(0.0, 0.0, 10.0, 10.0)val quadTree = QuadTree(boundary, 4)val points = listOf(Point(1.0, 1.0),Point(2.0, 2.0),Point(3.0, 3.0),Point(4.0, 4.0),Point(5.0, 5.0),Point(6.0, 6.0),Point(7.0, 7.0),Point(8.0, 8.0),Point(9.0, 9.0))for (point in points) {quadTree.insert(point)}val queryRange = Rectangle(0.0, 0.0, 5.6, 4.4)val foundPoints = quadTree.query(queryRange)println("Points in range:")for (point in foundPoints) {println("(${point.x}, ${point.y})")}
}
3. KD树
3.1 定义
KD树是一种树状数据结构,它将多维空间递归地划分为两个子空间,每个子空间由一个超平面分割。每个节点代表一个超矩形区域,并存储该区域内的所有点。
3.2 构建
构建KD树的过程如下:
- 选择一个维度作为分割维度,并找到该维度上的中位数。
- 使用中位数将空间划分为两个子空间。
- 递归地对每个子空间进行步骤 1 和 2,直到每个子空间只包含一个点或为空。
3.3 搜索
搜索KD树的过程如下:
- 从根节点开始,检查当前节点的区域是否包含目标点。
- 如果包含,则根据目标点的坐标选择相应的子节点进行递归搜索。
- 如果不包含,则搜索失败。
3.4 范围查询
范围查询是指查找所有位于给定超矩形区域内的点。搜索过程与搜索单个点类似,但需要遍历所有与查询区域相交的节点。
3.5 Kotlin 代码演示
// Define the Point class
internal class Point(var x: Double, var y: Double) {override fun toString(): String {return "($x, $y)"}
}// Define the k-d tree node class
internal class KDNode(var point: Point) {var left: KDNode? = nullvar right: KDNode? = null
}// Define the k-d tree class
internal class KDTree(points: List<Point>) {private val root: KDNode?init {this.root = buildTree(points, 0)}private fun buildTree(points: List<Point>, depth: Int): KDNode? {if (points.isEmpty()) {return null}val axis = depth % Kval sortedPoints = points.sortedWith(Comparator { a, b ->if (axis == 0) {a.x.compareTo(b.x)} else {a.y.compareTo(b.y)}})val medianIndex = sortedPoints.size / 2val node = KDNode(sortedPoints[medianIndex])node.left = buildTree(sortedPoints.subList(0, medianIndex), depth + 1)node.right = buildTree(sortedPoints.subList(medianIndex + 1, sortedPoints.size), depth + 1)return node}fun rangeSearch(lowerLeft: Point, upperRight: Point): List<Point> {val result: MutableList<Point> = ArrayList()rangeSearch(root, lowerLeft, upperRight, 0, result)return result}private fun rangeSearch(node: KDNode?,lowerLeft: Point,upperRight: Point,depth: Int,result: MutableList<Point>) {if (node == null) {return}val point = node.pointif (point.x >= lowerLeft.x && point.x <= upperRight.x && point.y >= lowerLeft.y && point.y <= upperRight.y) {result.add(point)}val axis = depth % Kif (axis == 0) {if (lowerLeft.x <= point.x) {rangeSearch(node.left, lowerLeft, upperRight, depth + 1, result)}if (upperRight.x >= point.x) {rangeSearch(node.right, lowerLeft, upperRight, depth + 1, result)}} else {if (lowerLeft.y <= point.y) {rangeSearch(node.left, lowerLeft, upperRight, depth + 1, result)}if (upperRight.y >= point.y) {rangeSearch(node.right, lowerLeft, upperRight, depth + 1, result)}}}companion object {private const val K = 2 // 2-dimensional space, e.g., x, y, z, t, etc}
}// Example usage
object KDTreeExample {@JvmStaticfun main(args: Array<String>) {val points: MutableList<Point> = ArrayList()points.add(Point(0.5, 0.5))points.add(Point(1.0, 1.0))points.add(Point(1.5, 1.5))points.add(Point(2.0, 2.0))points.add(Point(3.0, 3.0))val kdTree = KDTree(points)val lowerLeft = Point(0.0, 0.0)val upperRight = Point(1.5, 2.2)val result = kdTree.rangeSearch(lowerLeft, upperRight)for (point in result) {println(point)}}
}
5. 注意事项
- 四叉树和KD树的构建和搜索时间复杂度取决于数据的分布和查询区域的大小。
- 四叉树和KD树都是用于空间数据索引和检索的有效数据结构。四叉树适用于二维空间,而KD树适用于多维空间。
- 在实际应用中,可以使用各种优化技术来提高性能,例如使用边界框、预分配内存等。
- 对于高维数据,KD树的性能可能会下降,可以使用其他数据结构,例如球树或随机投影树。
相关文章:
四叉树和KD树
1. 简介 四叉树和KD树都是用于空间数据索引和检索的树状数据结构。它们通过将空间递归地划分为更小的区域,并存储每个区域内的点,来实现快速搜索和范围查询。 2. 四叉树 2.1 定义 四叉树是一种树状数据结构,它将二维空间递归地划分为四个…...
C语言中结构体使用.与->访问成员变量的区别
文章目录 前言点运算符(.)箭头运算符(->)总结 前言 在C语言中,. 和 -> 都是用来访问结构体成员的运算符,但它们的使用场景和含义有所不同。 提示:以下是本篇文章正文内容,下面…...

计算机二级Access选择题考点
在Access中,若要使用一个字段保存多个图像、图表、文档等文件,应该设置的数据类型是附件。在“销售表"中有字段:单价、数量、折扣和金额。其中,金额单价x数量x折扣,在建表时应将字段"金额"的数据类型定义为计算。若…...

人工智能历史与现状
1 人工智能历史与现状 1.1 人工智能的概念和起源 1.1.1 人工智能的概念 人工智能 (Artificial Intelligence ,AI)是一门研究如何使计算机 能够模拟人类智能行为的科学和技术,目标在于开发能够感知、理解、 学习、推理、决策和解决问题的智能机器。人工智能的概念主要包含 以…...

【git使用一】windows下git下载、安装和卸载
目录 (1)下载安装包 (2)安装git (3)安装验证 (4)卸载git (1)下载安装包 官网下载地址:Git 国内镜像下载地址:CNPM Binaries Mir…...

JVM 类加载器的工作原理
JVM 类加载器的工作原理 类加载器(ClassLoader)是一个用于加载类文件的子系统,负责将字节码文件(.class 文件)加载到 JVM 中。Java 类加载器允许 Java 应用程序在运行时动态地加载、链接和初始化类。 2. 类加载器的工…...
ARM Cortex-M4 CPU指令大全:作用、原理与实例
引言 在计算机系统中,CPU(中央处理器)是执行各种指令的核心部件。ARM Cortex-M4是广泛应用于嵌入式系统中的一款处理器,其指令集架构(ISA)基于ARMv7-M。本文将介绍ARM Cortex-M4处理器中的常见指令&#x…...

Mysql学习(九)——存储引擎
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 七、存储引擎7.1 MySQL体系结构7.2 存储引擎简介7.3 存储引擎特点7.4 存储引擎选择7.5 总结 七、存储引擎 7.1 MySQL体系结构 连接层:最上层是一些客户…...

TFT屏幕波形显示
REVIEW 关于TFT显示屏,之前已经做过彩条显示: TFT显示屏驱动_tft驱动-CSDN博客 关于ROM IP核,以及coe文件生成: FPGA寄存器 Vivado IP核_fpga寄存器资源-CSDN博客 1. TFT屏幕ROM显示正弦波 ①生成coe文件 %% sin-cos wave dat…...

服务器无法远程桌面连接不上的问题排查与解决方案
一、问题概述 当尝试使用远程桌面协议(RDP)连接至服务器时,如果连接失败,这通常意味着存在一些配置问题、网络问题或服务器本身的问题。此类问题对于管理员而言,需要系统地进行排查和解决。 二、排查步骤 1. 检查网…...
JAVA面试题整理——内存溢出与内存泄露的区别与联系
内存溢出与内存泄露的区别与联系 在前面jvm学习整理的时候其实用过一个简单的例子了解过内存溢出,在jvm内存模型章节下,大家有兴趣的可以去看看:JVM初学 GC_knowwait的博客-CSDN博客 内存溢出 内存溢出(out of memory)…...

L50--- 104. 二叉树的最大深度(深搜)---Java版
1.题目描述 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 2.思路 这个二叉树的结构如下: 根节点 1 左子节点 2 右子节点 3 左子节点 4 计算过程 从根节点 1 开始计算: 计算左子树的最大深度: 根节点 2…...

Linux 中 “ 磁盘、进程和内存 ” 的管理
在linux虚拟机中也有磁盘、进程、内存的存在。第一步了解一下磁盘 一、磁盘管理 (1.1)磁盘了解 track( 磁道 ) :就是磁盘上的同心圆,从外向里,依次排序1号,2号磁盘........等等。…...
test_pipeline
test_pipeline 是一个测试管道(test pipeline)的定义。 在计算机视觉任务中,通常需要对输入图像进行一系列的预处理操作,以便将其适配到模型的输入要求或提高模型的性能。测试管道就是用于定义这些预处理操作的一系列步骤。 在给…...
使用甲骨文云arm服务器安装宝塔时nginx无法卸载
使用甲骨文云arm服务器安装宝塔 其他环境都能安装上 唯独nginx安装完不运行 卸载了几次以后还无法卸载了. 修复 重启都不行. 差点就重建主机了. 最后靠下面的命令 就卸载掉了 然后重装就把nginx安装好了 mv /www/server/nginx/sbin/nginx /tmp/nginx_back mv /etc/in…...

C++青少年简明教程:C++的指针入门
C青少年简明教程:C的指针入门 说到指针,就不可能脱离开内存。了解C的指针对于初学者来说可能有些复杂,我们可以试着以一种简单、形象且易于理解的方式来解释: 首先,我们可以将计算机内存想象成一个巨大的有许多格子的…...
Apache Doris 基础 -- 数据表设计(分层存储)
1、应用场景 未来一个重要的用例是类似于ES日志存储,其中日志场景中的数据是根据日期分割的。许多数据都是查询不频繁的冷数据,因此需要降低此类数据的存储成本。考虑到节约成本: 来自不同厂商的常规云磁盘的定价比对象存储更昂贵。Doris 集群实际在线…...
使用Spring Boot设计一套BI系统
商业智能(Business Intelligence,简称BI)系统是一种将数据转化为可操作信息,帮助企业进行决策支持的技术与工具的集合。随着大数据时代的到来,BI系统在企业中的应用变得越来越广泛。本文旨在探讨如何使用Spring Boot框…...
2024.6.12总结
今天是排毕业照的日子,拍照的时候并没有太过兴奋。后来受到主管说明天就能签offer了,这才喜极而泣。 自从得知自己面试通过后,我是非常高兴,开始幻想着今后的生活。可是,后面在等offer的过程中,我是无比的…...
1027 - 求任意三位数各个数位上数字的和
问题描述 对于一个任意的三位自然数 x ,编程计算其各个数位上的数字之和 S 。 输入 输入一行,只有一个整数 x(100≤x≤999) 。 输出 输出只有一行,包括 1 个整数。 样例 输入 123 输出 6 以下是C实现的代码: 代码1 #…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
Admin.Net中的消息通信SignalR解释
定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...

2021-03-15 iview一些问题
1.iview 在使用tree组件时,发现没有set类的方法,只有get,那么要改变tree值,只能遍历treeData,递归修改treeData的checked,发现无法更改,原因在于check模式下,子元素的勾选状态跟父节…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
力扣-35.搜索插入位置
题目描述 给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...