Pytorch模型参数的保存和加载
目录
一、前言
二、参数保存
三、参数的加载
四、保存和加载整个模型
五、总结
一、前言
在模型训练完成后,我们需要保存模型参数值用于后续的测试过程。由于保存整个模型将耗费大量的存储,故推荐的做法是只保存参数,使用时只需在建好模型的基础上加载。
通常来说,保存的对象包括网络参数值、优化器参数值、epoch值等。本文将简单介绍保存和加载模型参数的方法,同时也给出保存整个模型的方法供大家参考。
二、参数保存
在这里我们使用 torch.save() 函数保存模型参数:
import torch
path = './model.pth'
torch.save(model.state_dict(), path)
model——指定义的模型实例变量,如model=net( )
state_dict()——state_dict( )是一个可以轻松地保存、更新、修改和恢复的python字典对象, 对于model来说,表示模型的每一层的权重及偏置等参数信息;对于 optimizer 来说,其包含了优化器的状态以及被使用的超参数(如lr, momentum,weight_decay等)
path——path是保存参数的路径,一般设置为 path='./model.pth' , path='./model.pkl'等形式。
此外,如果想保存某一次训练采用的optimizer、epochs等信息,可将这些信息组合起来构成一个字典保存起来:
import torch
path = './model.pth'
state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict(), 'epoch': epoch}
torch.save(state, path)
三、参数的加载
使用 load_state_dict()函数加载参数到模型中, 当仅保存了模型参数,而没有optimizer、epochs等信息时:
model.load_state_dict(torch.load(path))
model——事先定义好的跟原模型一致的模型
path——之前保存的模型参数文件
如若保存了optimizer、epochs等信息,我们这样载入信息:
# 使用torch.load()函数将文件中字典信息载入 state_dict 变量中
state_dict = torch.load(path)
# 分布加载参数到模型和优化器
model.load_state_dict(state_dict['model'])
optimizer.load_state_dict(state_dict['optimizer'])
epoch = state_dict(['epoch'])
我们还可以在每n个epoch后保存一次参数,以观察不同迭代次数模型的表现。此时我们可设置不同的path,如 path='./model' + str(epoch) +'.pth',这样,不同epoch的参数就能保存在不同的文件中。
四、保存和加载整个模型
使用上文提到的方法即可:
torch.save(model, path)
model = torch.load(path)
五、总结
pytorch中state_dict()和load_state_dict()函数配合使用可以实现状态的获取与重载,load()和save()函数配合使用可以实现参数的存储与读取。掌握对应的函数使用方法就可以游刃有余地进行运用。
相关文章:
Pytorch模型参数的保存和加载
目录 一、前言 二、参数保存 三、参数的加载 四、保存和加载整个模型 五、总结 一、前言 在模型训练完成后,我们需要保存模型参数值用于后续的测试过程。由于保存整个模型将耗费大量的存储,故推荐的做法是只保存参数,使用时只需在建好模…...
面试热点题:回溯算法之组合 组合与组合总和 III
什么是回溯算法? 回溯算法也可以叫回溯搜索算法,回溯是递归的"副产品",回溯的本质是穷举,然后选出我们需要的数据,回溯本身不是特别高效的算法,但我们可以通过"剪枝"来优化它。 理解回溯算法 回溯…...
java面试-jvm
JVM JVM 是 java 虚拟机,简单来说就是能执行标准 java 字节码的虚拟计算机 JVM 是如何工作的 首先程序在执行之前先要把 Java 代码(.java)转换成字节码(.class),JVM 通过类加载器(ClassLoade…...
vscode下载与使用
1.vscode下载 官网下载地址:Download Visual Studio Code - Mac, Linux, Windows下载太慢,推荐文章:解决VsCode下载慢问题_vscode下载太慢_迷小圈的博客-CSDN博客下载太慢,推荐下载链接:https://vscode.cdn.azure.cn/s…...
人员摔倒识别预警算法 opencv
人员摔倒识别预警算法通过opencv网络模型技术,人员摔倒识别预警算法能够智能检测现场画面中人员有没有摔倒,无需人为干预可以立刻抓拍告警。OpenCV的全称是Open Source Computer Vision Library,是一个跨平台的计算机视觉处理开源软件库&…...
华为OD机试题 - 火星文计算(JavaScript)| 机考必刷
更多题库,搜索引擎搜 梦想橡皮擦华为OD 👑👑👑 更多华为OD题库,搜 梦想橡皮擦 华为OD 👑👑👑 更多华为机考题库,搜 梦想橡皮擦华为OD 👑👑👑 华为OD机试题 最近更新的博客使用说明本篇题解:火星文计算题目输入输出示例一输入输出说明Code解题思路版权说明…...
AI人工智能 - 初探
1.应用场景 主要用于了解和系统学习AI,从而可以在工作生活中利用AI做一些事。 2.学习/操作 1.文档阅读 下面的内容来自于与chatGPT的对话 2.整理输出 介绍AI 人工智能(Artificial Intelligence,简称AI)是计算机科学中的一个分支&…...
Spring-AOP工作流程
Spring-AOP工作流程 3,AOP工作流程 3.1 AOP工作流程 由于AOP是基于Spring容器管理的bean做的增强,所以整个工作过程需要从Spring加载bean说起: 流程1:Spring容器启动 容器启动就需要去加载bean,哪些类需要被加载呢?需要被增强的类,如:B…...
C51---串口发送指令,控制LED灯亮灭
1.Code: #include "reg52.h" #include "intrins.h" sfr AUXR 0x8E; sbit D5 P3^7; void UartInit(void) //9600bps11.0592MHz { //PCON & 0x7F; //波特率不倍速 AUXR 0x01; SCON 0x50; //8位数据,可变波…...
【Wiki】XWiki数据备份
XWiki为主题使用java开发的开源wiki,官网地址如下: https://www.xwiki.org/xwiki/bin/view/Main/ 目录1、 XWiki升级数据备份1.1、 获取XWiki配置的数据库与持久化目录信息1.2 备份数据库信息1.3 备份持久化目录2、XWiki数据迁移如果一个知识库不能确保数…...
ctk框架开发Qt插件应用示例工程
目录 前言 约定 插件工程pluginApp: 主启动工程StartApp: 效果演示 结语...
spring5源码篇(4)——beanFactoryPostProcessor执行/注解bean的装配
spring-framework 版本:v5.3.19 前面研究了beanDefinition的注册,但也仅仅是注册这一动作。那么在spring容器启动的过程中,是何时/如何装配的?以及装配的bean是如何注入的? (考虑到xml方式基本不用了以及篇…...
masstransit的message几个高级用法
1)问题,Class MessageA 基类,Class MessageB继承自MessageA; 用bus.Publish方法本想把有些消息只发给B队列,结果由于其继承关系A队列也获得了消息; 解决方法用send, Uri uri new Uri(RabbitM…...
漏洞分析丨cve-2012-0003
作者:黑蛋一、漏洞简介这次漏洞属于堆溢出漏洞,他是MIDI文件中存在的堆溢出漏洞。在IE6,IE7,IE8中都存在这个漏洞。而这个漏洞是Winmm.dll中产生的。二、漏洞环境虚拟机调试工具目标软件辅助工具XP-SP3、KaliOD、IDAIE6Windbg组件gflags.exe三…...
rm命令——删除文件或目录
rm命令是英文单词remove的缩写,主要功能是删除文件或目录。 因为删除文件是一个破坏性动作,因此,在使用时需要格外小心,在执行之前一定要再三确认删除的是哪个目录中的什么文件。 rm命令的语法格式如下: rm [选项] …...
【零基础入门学习Python---Python的基本语法使用】
一.Python基本语法使用 Python是一种易学且功能强大的编程语言,具有简洁的语法和广泛的应用领域。在本文中,我们将介绍Python的基本语法使用,以帮助初学者快速入门Python编程。 1.1 注释 Python 支持两种类型的注释:单行注释和多行注释。 单行注释:以 # 符号开头,从 # …...
数据仓库相关概念的解释
数据仓库相关概念的解释 文章目录数据仓库相关概念的解释1 ETL是什么?ETL体系结构2 数据流向何为数仓DW3 ODS 是什么?4 数据仓库层DWDWD 明细层DWD 轻度汇总层(MID或DWB,data warehouse basis)DWS 主题层(D…...
1/4车、1/2车、整车悬架模糊PID控制仿真合集
目录 前言 1. 1/4悬架系统 1.1数学模型 1.2仿真分析 2. 1/2悬架系统 2.1数学模型 2.2仿真模型 2.3仿真分析 3. 整车悬架系统 3.1数学模型 3.2仿真分析 4.总结 前言 前面几篇文章介绍了LQR、SkyHook、H2/H∞、PID控制,接下来会继续介绍滑模、反步法、M…...
Linux性能补丁升级,避免不必要的跨核Wake-Up
导读一个由英特尔发起的、旨在改进Linux内核公平调度程序代码的补丁系列,也看到了来自AMD工程师和其他利益相关者的测试/反馈,并继续进行改进。这个补丁系列的重点是避免在不必要的情况下发生过多的跨核唤醒(Cross-CPU Wake-up)。这样一来,这…...
Spring Cloud Alibaba全家桶(六)——微服务组件Sentinel介绍与使用
前言 本文小新为大家带来 微服务组件Sentinel介绍与使用 相关知识,具体内容包括分布式系统存在的问题,分布式系统问题的解决方案,Sentinel介绍,Sentinel快速开始(包括:API实现Sentinel资源保护,…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
es6+和css3新增的特性有哪些
一:ECMAScript 新特性(ES6) ES6 (2015) - 革命性更新 1,记住的方法,从一个方法里面用到了哪些技术 1,let /const块级作用域声明2,**默认参数**:函数参数可以设置默认值。3&#x…...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
