AI 客服定制:LangChain集成订单能力
为了提高AI客服的问题解决能力,我们引入了LangChain自定义能力,并集成了订单能力。这使得AI客服可以根据用户提出的问题,自动调用订单接口,获取订单信息,并结合文本知识库内容进行回答。这种能力的应用,使得AI客服可以更好地解决与业务系统有关的问题。
简易AI客服实现
本文是对前文AI客服的迭代升级,集成订单能力,使其在售后方面也能提供一些自动快速解决能力。
基于子类化 BaseTool 实现订单查询能力
通过子类化BaseTool 可以快速实现基于业务的工具,工具可以在代理运行时调用。在定义工具时,工具描述description
是非常重要的,它决定了大模型通过代理决策是否要调用该工具。在订单信息中返回与用户问题回复有关的信息,根据自己的业务决定。
代码语言:javascript
复制
import jsonfrom typing import Optional, Typeimport aiohttpimport requestsfrom langchain.callbacks.manager import AsyncCallbackManagerForToolRun, CallbackManagerForToolRunfrom langchain.tools import BaseToolfrom pydantic import BaseModel, Fieldclass XmhcOrderQuery(BaseModel): keyword: Optional[str] = Field(description="手机号或者订单号")class XmhcOrderTool(BaseTool): name = "XmhcOrderTool" description = """ It is very useful when you need to answer questions about recharge or orders. If this tool is called, users must provide their phone number or order number to enter information. And it is necessary to determine whether the tool needs to be called based on the context. If the order status is transaction closed, the order has been cancelled and cannot be considered as recharge not received. The estimated time of receipt can be calculated based on submitRechargeTime. Functional information cannot be disclosed. """ args_schema: Type[BaseModel] = XmhcOrderQuery def _run(self, keyword: str = None, run_manager: Optional[CallbackManagerForToolRun] = None) -> str: if keyword is None: return "请提订单供充值手机号或者订单号" return self._process_response(self.results(keyword)) async def _arun(self, keyword: str = None, run_manager: Optional[AsyncCallbackManagerForToolRun] = None) -> str: if keyword is None: return "请提订单供充值手机号或者订单号" return self._process_response(await self.aresults(keyword)) def results(self, keyword: str) -> dict: response = requests.get("https://***/ai/order/query?keyword=" + keyword) res = json.loads(response.content) return res async def aresults(self, keyword: str) -> dict: async with aiohttp.ClientSession() as session: async with session.get( "https://***/ai/order/query?keyword=" + keyword ) as response: res = await response.json() return res @staticmethod def _process_response(res: dict) -> str: print(res) if bool(res['success']): return json.dumps(res["data"]) else: return res['message']
😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓

基于Flask 实现。其中实现了 XmhcOrderTool
、XmhcRuleTool
两个工具,XmhcRuleTool
是基于会话检索实现问答,XmhcRuleTool
即上面定义的业务接口。
到这我们就实现了基于用户提问,模型自动决策调用相关工具。但这样仍存在一些问题,因为我们的工具是独立的,大模型可能只是基于某个工具来回答问题。
例如,当提问:充值成了但还未到账
然后根据上文,我们提供手机号:
可以发现其完整的把订单信息给输出了,部分信息这对用户想要的内容并不相关,这不是一个友好的回答。
这里还是要重点强调一下工具描述的重要性,它不仅可以用于被决策是否要调用,还可以影响大模型的回答,比如在描述中加了If the order status is transaction closed, the order has been cancelled and cannot be considered as recharge not received.
,这样它能明确在订单状态为交易关闭时做出更理想的回答。
提问:充值手机号15669923532多久能到账
当用户提问可能需要用到两个工具时,它可能只调用了一个工具,而这一个工具无法提供正确的回答。
优化提示词
通过优化提示词(Prompt),可以让 AI 客服有思考能力,并且让不同的工具之间也能有交互。如下可以把工具写入提示词中,并且告诉AI你需要思考后再回答用户的问题,这里只展示本次优化的提示词,提示词是用户指导AI的,提示词也需要根据实际情况不断调试优化。
提问:充值手机号15669923532多久能到账
提问:订单202308041558160774多久会到账
此示例,AI 调用了两个工具进行回答。
小结
本文只是实现了简单的功能,如果要让AI回答得更加完美且贴合业务,需要不断优化提示词、工具描述、知识库、工具参数等等。
那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。
以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。
相关文章:

AI 客服定制:LangChain集成订单能力
为了提高AI客服的问题解决能力,我们引入了LangChain自定义能力,并集成了订单能力。这使得AI客服可以根据用户提出的问题,自动调用订单接口,获取订单信息,并结合文本知识库内容进行回答。这种能力的应用,使得…...

【计算机毕业设计】242基于微信小程序的外卖点餐系统
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
java程序监控linux服务器硬件,cpu、mem、disk等
实现 使用Oshi和Hutool工具包1、pom依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>com.github.oshi</groupId>&l…...
高考报志愿闲谈
当你的朋友在选择大学和专业时寻求建议,作为一名研究生并有高考经验的人,你可以提供一些有价值的见解和建议。 兴趣与职业目标: 首先询问他对哪些工科领域感兴趣,如机械工程、电子工程、计算机科学等。探讨他的职业目标。了解他将…...

面试官考我Object类中的所有方法及场景使用?我...
咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java 知识点啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯&a…...
Web前端精通教程:深入探索与实战指南
Web前端精通教程:深入探索与实战指南 在数字化时代,Web前端技术已经成为构建优秀用户体验的基石。想要精通Web前端,不仅需要掌握扎实的基础知识,还需要具备丰富的实战经验和深入的思考。本文将从四个方面、五个方面、六个方面和七…...

四轴飞行器、无人机(STM32、NRF24L01)
一、简介 此电路由STM32为主控芯片,NRF24L01、MPU6050为辅,当接受到信号时,处理对应的指令。 二、实物图 三、部分代码 void FlightPidControl(float dt) { volatile static uint8_t statusWAITING_1; switch(status) { case WAITING_1: //等待解锁 if…...

OpenAI Assistants API:如何使用代码或无需代码创建您自己的AI助手
Its now easier than ever to create your own AI Assistant that can handle a lot of computing tasks for you. See how you can get started with the OpenAI AI Assistant API. 现在比以往任何时候都更容易创建您自己的AI助手,它可以为您处理许多计算任务。了…...

CentOS7 配置Nginx域名HTTPS
Configuring Nginx with HTTPS on CentOS 7 involves similar steps to the ones for Ubuntu, but with some variations in package management and service control. Here’s a step-by-step guide for CentOS 7: Prerequisites Domain Name: “www.xxx.com”Nginx Install…...

C++入门8 构造函数析构函数顺序|拷贝构造
一,构造函数析构函数 调用顺序 我们先来看下面的代码: #define _CRT_SECURE_NO_WARNINGS #include <iostream> #include <cstring> using namespace std; class student { public:char my_name[20];int my_id;student(int a) {my_id a;co…...

【git使用四】git分支理解与操作(详解)
目录 (1)理解git分支 主分支(主线) 功能分支 主线和分支关系 将分支合并到主分支 快速合并 非快速合并 git代码管理流程 (2)理解git提交对象 提交对象与commitID Git如何保存数据 示例讲解 &a…...

【docker】如何解决artalk的跨域访问问题
今天折腾halo的时候,发现artalk出现跨域访问报错,内容如下。 Access to fetch at https://artk.musnow.top/api/stat from origin https://halo.musnow.top has been blocked by CORS policy: The Access-Control-Allow-Origin header contains multipl…...

MYSQL 索引下推 45讲
刘老师群里,看到一位小友 问<MYSQL 45讲>林晓斌的回答 大意是一个组合索引 (a,b,c) 条件 a > 5 and a <10 and b123, 这样的情况下是如何? 林老师给的回答是 A>5 ,然后下推B123 小友 问 "为什么不是先 进行范围查询,然后在索引下推 b123?" 然后就…...

CentOS7服务器中安装openCV4.8的教程
参考链接:Centos7环境下cmake3.25的编译与安装 参考链接:Linux安装或者升级cmake,例子为v3.10.2升级到v3.25.0(自己指定版本) 参考链接:Linux安装Opencv(C) 一、下载资源 1.下载cmake3.25.0的压缩包&am…...

Java课程设计:基于swing的贪吃蛇小游戏
文章目录 一、项目介绍二、核心代码三、项目展示四、源码获取 一、项目介绍 贪吃蛇是一款经典的休闲益智游戏,自问世以来便深受广大用户的喜爱。这个游戏的基本玩法是控制一条不断增长的蛇,目标是吃掉屏幕上出现的食物,同时避免撞到边缘或自身。随着游戏的进行,蛇的身体会越长…...
【HarmonyOS】HUAWEI DevEco Studio 下载地址汇总
目录 OpenHarmony 4.x Releases 4.1 Release4.0 Release OpenHarmony 3.x Releases 3.2.1 Release3.2 Release3.1.3 Release3.1.2 Release3.1.1 Release3.1 Release 说明 Full SDK:面向OEM厂商提供,包含了需要使用系统权限的系统接口。 Public SDK&am…...
华为OD刷题C卷 - 每日刷题30(小明找位置,分隔均衡字符串)
1、(小明找位置): 这段代码是解决“小明找位置”的问题。它提供了一个Java类Main,其中包含main方法和getResult方法,用于帮助小明快速找到他在排队中应该站的位置。 main方法首先读取已排列好的小朋友的学号数组和小…...

SOFTS: 时间序列预测的最新模型以及Python使用示例
近年来,深度学习一直在时间序列预测中追赶着提升树模型,其中新的架构已经逐渐为最先进的性能设定了新的标准。 这一切都始于2020年的N-BEATS,然后是2022年的NHITS。2023年,PatchTST和TSMixer被提出,最近的iTransforme…...
C++ 取近似值
描述 写出一个程序,接受一个正浮点数值,输出该数值的近似整数值。如果小数点后数值大于等于 0.5 ,向上取整;小于 0.5 ,则向下取整。 数据范围:保证输入的数字在 32 位浮点数范围内 输入描述: 输入一个正…...

云原生系列之Docker常用命令
🌹作者主页:青花锁 🌹简介:Java领域优质创作者🏆、Java微服务架构公号作者😄 🌹简历模板、学习资料、面试题库、技术互助 🌹文末获取联系方式 📝 系列文章目录 云原生之…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...

vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...

Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础
第三周 Day 3 🎯 今日目标 理解类(class)和对象(object)的关系学会定义类的属性、方法和构造函数(init)掌握对象的创建与使用初识封装、继承和多态的基本概念(预告) &a…...

快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...