MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?
一. 问题描述
我们在设计表结构的时候,设计规范里面有一条如下规则:
-
对于可变长度的字段,在满足条件的前提下,尽可能使用较短的变长字段长度。
为什么这么规定?我在网上查了一下,主要基于两个方面
-
基于存储空间的考虑
-
基于性能的考虑
网上说Varchar(50)
和varchar(500)
存储空间上是一样的,真的是这样吗?
基于性能考虑,是因为过长的字段会影响到查询性能?
本文我将带着这两个问题探讨验证一下
二.验证存储空间区别
1.准备两张表
CREATE TABLE `category_info_varchar_50` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(50) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='分类';CREATE TABLE `category_info_varchar_500` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(500) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB AUTO_INCREMENT=288135 DEFAULT CHARSET=utf8mb4 COMMENT='分类';
2.准备数据
给每张表插入相同的数据,为了凸显不同,插入100万条数据
DELIMITER $$
CREATE PROCEDURE batchInsertData(IN total INT)
BEGINDECLARE start_idx INT DEFAULT 1;DECLARE end_idx INT;DECLARE batch_size INT DEFAULT 500;DECLARE insert_values TEXT;SET end_idx = LEAST(total, start_idx + batch_size - 1);WHILE start_idx <= total DOSET insert_values = '';WHILE start_idx <= end_idx DOSET insert_values = CONCAT(insert_values, CONCAT('(\'name', start_idx, '\', 0, 0, 0, NOW(), NOW()),'));SET start_idx = start_idx + 1;END WHILE;SET insert_values = LEFT(insert_values, LENGTH(insert_values) - 1); -- Remove the trailing commaSET @sql = CONCAT('INSERT INTO category_info_varchar_50 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';');PREPARE stmt FROM @sql;EXECUTE stmt;SET @sql = CONCAT('INSERT INTO category_info_varchar_500 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';'); PREPARE stmt FROM @sql;EXECUTE stmt;SET end_idx = LEAST(total, start_idx + batch_size - 1);END WHILE;
END$$
DELIMITER ;CALL batchInsertData(1000000);
3.验证存储空间
查询第一张表SQL
SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 ) AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 ) AS "索引容量(MB)"
FROMinformation_schema.TABLES
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_50'
ORDER BYdata_length DESC,index_length DESC;
查询结果
查询第二张表SQL
SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 ) AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 ) AS "索引容量(MB)"
FROMinformation_schema.TABLES
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_500'
ORDER BYdata_length DESC,index_length DESC;
查询结果
4.结论
两张表在占用空间上确实是一样的,并无差别
三.验证性能区别
1.验证索引覆盖查询
select name from category_info_varchar_50 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_500 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_50 order by name;
-- 耗时0.370s
select name from category_info_varchar_500 order by name;
-- 耗时0.379s
通过索引覆盖查询性能差别不大
1.验证索引查询
select * from category_info_varchar_50 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_500 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000')
-- 耗时 0.011s -0.014s
-- 增加 order by name 耗时 0.012s - 0.015sselect * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000')
-- 耗时 0.012s -0.014s
-- 增加 order by name 耗时 0.014s - 0.017s
索引范围查询性能基本相同, 增加了order By后开始有一定性能差别;
3.验证全表查询和排序
全表无排序
全表有排序
select * from category_info_varchar_50 order by name ;
--耗时 1.498s
select * from category_info_varchar_500 order by name ;
--耗时 4.875s
结论:
全表扫描无排序情况下,两者性能无差异,在全表有排序的情况下, 两种性能差异巨大;
分析原因
varchar50 全表执行sql分析
我发现86%的时花在数据传输上,接下来我们看状态部分,关注Created_tmp_files和sort_merge_passes
Created_tmp_files为3
sort_merge_passes为95
varchar500 全表执行sql分析
增加了临时表排序
Created_tmp_files 为 4
sort_merge_passes为645
关于sort_merge_passes, Mysql给出了如下描述:
❝Number of merge passes that the sort algorithm has had to do. If this value is large, you may want to increase the value of the sort_buffer_size.
❞
其实sort_merge_passes对应的就是MySQL做归并排序的次数,也就是说,如果sort_merge_passes值比较大,说明sort_buffer和要排序的数据差距越大,我们可以通过增大sort_buffer_size或者让填入sort_buffer_size的键值对更小来缓解sort_merge_passes归并排序的次数。
四.最终结论
至此,我们不难发现,当我们最该字段进行排序操作的时候,Mysql会根据该字段的设计的长度进行内存预估, 如果设计过大的可变长度, 会导致内存预估的值超出sort_buffer_size的大小, 导致mysql采用磁盘临时文件排序,最终影响查询性能
相关文章:

MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?
一. 问题描述 我们在设计表结构的时候,设计规范里面有一条如下规则: 对于可变长度的字段,在满足条件的前提下,尽可能使用较短的变长字段长度。 为什么这么规定?我在网上查了一下,主要基于两个方面 基于存储空间的考…...

强化RAG:微调Embedding还是LLM?
为什么我们需要微调? 微调有利于提高模型的效率和有效性。它可以减少训练时间和成本,因为它不需要从头开始。此外,微调可以通过利用预训练模型的功能和知识来提高性能和准确性。它还提供对原本无法访问的任务和领域的访问,因为它…...
提取 Excel单元格文本下的超链接
在Excel中,可以使用内置的函数来提取单元格中的超链接地址。如果你有一个包含超链接的单元格,例如B1,你可以使用以下步骤来提取这个超链接: 在一个新的单元格(例如C1)中,输入以下公式ÿ…...

一键安全体检!亚信安全携手鼎捷软件推出企业安全体检活动 正式上线
亚信安全联合鼎捷软件股份有限公司(以下简称“鼎捷软件”)正式推出“一键安全体检”服务。亚信安全网络安全专家将携手鼎捷软件数据安全专家,围绕企业的数智安全状况,进行问题探索与治愈、新问题预测与预警,在全面筛查…...
numpy - array(1)
一维数据:向量 二位数据:矩阵 维度超过三维的数据:张量 这些数据在numpy中统称array (1)使用穷举法创建多为数据,接受列表或者元组类型的数据 a numpy.array([1, 2, 3]) b numpy.array([[1, 2, 3], (4, 5, 6), [7, 8, 9]]) (2)创建所有元…...

师彼长技以助己(6)递归思维
师彼长技以助己(6)递归思维 递归思维-小游戏 思维小游戏 思维 小游戏:1 玩一个从1或2开始往上加的游戏,谁加到20就赢 如何保证一定赢呢?我们倒推,要先到20的话,谁先到17就赢,如此…...

Kali Linux 2024.2
Kali Linux 2024.2 版本(t64、GNOME 46 和社区包) 比平常晚了一点,但 Kali 2024.2 来了!延迟是由于实现这一目标的幕后变化所致,这也是人们关注的焦点。社区提供了大量帮助,这次他们不仅添加了新的软件包&…...

【Spine学习08】之短飘,人物头发动效制作思路
上一节说完了跑步的, 这节说头发发型。 基础过程总结: 1.创建骨骼(头发需要在上方加一个总骨骼) 2.创建网格(并绑定黄线) 3.绑定权重(发根位置的顶点赋予更多总骨骼的权重) 4.切换到…...

chatgpt的命令词
人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 目录 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌…...
用python把docx批量转为pdf
为保证转换质量,本文的方法是通过脚本和com技术调用office自带的程序进行转换的,因此需要电脑已经装有office。如果希望不装office也能用,则需要研究OpenXML技术,后面实在闲的慌(退休)再搞。 安装所需库 …...

项目采购管理
目录 1.概述 2.三个子过程 2.1.规划采购管理 2.2.实施采购 2.3.控制采购 2.4.归属过程组 3.应用场景 3.1.十个应用场景 3.2.软件开发项目 3.2.1. 需求识别和分析 3.2.2. 制定采购计划 3.2.3. 发布采购请求 3.2.4. 供应商评估与选择 3.2.5. 合同签订 3.2.6. 采购…...

Elasticsearch 认证模拟题 - 18
一、题目 为一个索引,按要求设置以下 dynamic Mapping 一切 text 类型的字段,类型全部映射成 keyword一切以 int_ 开头命名的字段,类型都设置成 integer 1.1 考点 字段的动态映射 1.2 答案 # 创建索引和索引模板 PUT my_index {"m…...
Python基础-速记笔记
Python的基础数据类型都有哪些? 1、字符串(string)2、布尔类型(bool)3、整数(int) 4、浮点数(float)5、列表(list)6、集合(set)7、元组(tuple)8、字典(dict) 其中不可变类型有: 字符串(string)、布尔类型(bool)、整数(int) 、浮点数(float)、元组(tup…...
青少年编程与数学 01-001开始使用计算机 02课题、计算机操作系统3_3
青少年编程与数学 01-001开始使用计算机 02课题、计算机操作系统3_3 四、Linux操作系统安装(一) 准备工作(二)设置BIOS/UEFI(三) 安装Linux(四)磁盘分区(五)安…...

填表统计预约打卡表单系统(FastAdmin+ThinkPHP+UniApp)
填表统计预约打卡表单系统:一键搞定你的预约与打卡需求 填表统计预约打卡表单系统是一款基于FastAdminThinkPHPUniApp开发的一款集信息填表、预约报名,签到打卡、活动通知、报名投票、班级统计等功能的自定义表单统计小程序。 📝 一、引言…...

IO模型和多路转接
叠甲:以下文章主要是依靠我的实际编码学习中总结出来的经验之谈,求逻辑自洽,不能百分百保证正确,有错误、未定义、不合适的内容请尽情指出! 文章目录 1.IO 概要1.1.IO 低效原因1.2.IO 常见模型1.2.1.阻塞 IO1.2.2.非阻…...

如何完美解决升级 IntelliJ IDEA 最新版之后遇到 Git 记住密码功能失效的问题
🛠️ 如何完美解决升级 IntelliJ IDEA 最新版之后遇到 Git 记住密码功能失效的问题 摘要 在这篇文章中,我们将详细探讨如何解决在升级到 IntelliJ IDEA 最新版(2024.1.3 Ultimate Edition)后遇到的 Git 记住密码功能失效的问题。…...

SpringCloud微服务架构(eureka、nacos、ribbon、feign、gateway等组件的详细介绍和使用)
一、微服务演变 1、单体架构(Monolithic Architecture) 是一种传统的软件架构模式,应用程序的所有功能和组件都集中在一个单一的应用中。 在单体架构中,应用程序通常由一个大型的、单一的代码库组成,其中包含了所有…...
flinksql BUG : flink hologres-cdc source FINISHED
org.apache.flink.runtime.JobException: The failure is not recoverable or the failure does not allow to restart.at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler...
现代密码学-国密算法
商用密码算法种类 商用密码算法 密码学概念、协议与算法之间的依赖关系 数字签名、证书-公钥密码、散列类算法 消息验证码-对称密码 ,散列类 安全目标与算法之间的关系 机密性--对称密码、公钥密码 完整性--散列类算法 可用性--散列类、公钥密码 真实性--公…...

测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...

基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散
前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说,在叠衣服的过程中,我会带着团队对比各种模型、方法、策略,毕竟针对各个场景始终寻找更优的解决方案,是我个人和我司「七月在线」的职责之一 且个人认为,…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...