当前位置: 首页 > news >正文

MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?

一. 问题描述

我们在设计表结构的时候,设计规范里面有一条如下规则:

  • 对于可变长度的字段,在满足条件的前提下,尽可能使用较短的变长字段长度。

为什么这么规定?我在网上查了一下,主要基于两个方面

  • 基于存储空间的考虑

  • 基于性能的考虑

网上说Varchar(50)varchar(500)存储空间上是一样的,真的是这样吗?

基于性能考虑,是因为过长的字段会影响到查询性能?

本文我将带着这两个问题探讨验证一下

二.验证存储空间区别

1.准备两张表

CREATE TABLE `category_info_varchar_50` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(50) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='分类';CREATE TABLE `category_info_varchar_500` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键',`name` varchar(500) NOT NULL COMMENT '分类名称',`is_show` tinyint(4) NOT NULL DEFAULT '0' COMMENT '是否展示:0 禁用,1启用',`sort` int(11) NOT NULL DEFAULT '0' COMMENT '序号',`deleted` tinyint(1) DEFAULT '0' COMMENT '是否删除',`create_time` datetime NOT NULL COMMENT '创建时间',`update_time` datetime NOT NULL COMMENT '更新时间',PRIMARY KEY (`id`) USING BTREE,KEY `idx_name` (`name`) USING BTREE COMMENT '名称索引'
) ENGINE=InnoDB AUTO_INCREMENT=288135 DEFAULT CHARSET=utf8mb4 COMMENT='分类';

2.准备数据

给每张表插入相同的数据,为了凸显不同,插入100万条数据

DELIMITER $$
CREATE PROCEDURE batchInsertData(IN total INT)
BEGINDECLARE start_idx INT DEFAULT 1;DECLARE end_idx INT;DECLARE batch_size INT DEFAULT 500;DECLARE insert_values TEXT;SET end_idx = LEAST(total, start_idx + batch_size - 1);WHILE start_idx <= total DOSET insert_values = '';WHILE start_idx <= end_idx DOSET insert_values = CONCAT(insert_values, CONCAT('(\'name', start_idx, '\', 0, 0, 0, NOW(), NOW()),'));SET start_idx = start_idx + 1;END WHILE;SET insert_values = LEFT(insert_values, LENGTH(insert_values) - 1); -- Remove the trailing commaSET @sql = CONCAT('INSERT INTO category_info_varchar_50 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';');PREPARE stmt FROM @sql;EXECUTE stmt;SET @sql = CONCAT('INSERT INTO category_info_varchar_500 (name, is_show, sort, deleted, create_time, update_time) VALUES ', insert_values, ';'); PREPARE stmt FROM @sql;EXECUTE stmt;SET end_idx = LEAST(total, start_idx + batch_size - 1);END WHILE;
END$$
DELIMITER ;CALL batchInsertData(1000000);

3.验证存储空间

查询第一张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_50'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

查询第二张表SQL

SELECTtable_schema AS "数据库",table_name AS "表名",table_rows AS "记录数",TRUNCATE ( data_length / 1024 / 1024, 2 )  AS "数据容量(MB)",TRUNCATE ( index_length / 1024 / 1024, 2 )  AS "索引容量(MB)" 
FROMinformation_schema.TABLES 
WHEREtable_schema = 'test_mysql_field' and TABLE_NAME = 'category_info_varchar_500'
ORDER BYdata_length DESC,index_length DESC;

查询结果

图片

4.结论

两张表在占用空间上确实是一样的,并无差别

三.验证性能区别

1.验证索引覆盖查询

select name from category_info_varchar_50 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_500 where name = 'name100000'
-- 耗时0.012s
select name from category_info_varchar_50 order by name;
-- 耗时0.370s
select name from category_info_varchar_500 order by name;
-- 耗时0.379s

通过索引覆盖查询性能差别不大

1.验证索引查询

select * from category_info_varchar_50 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_500 where name = 'name100000'
--耗时 0.012s
select * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时 0.011s -0.014s 
-- 增加 order by name 耗时 0.012s - 0.015sselect * from category_info_varchar_50 where name in('name100','name1000','name100000','name10000','name1100000',
'name200','name2000','name200000','name20000','name2200000','name300','name3000','name300000','name30000','name3300000',
'name400','name4000','name400000','name40000','name4400000','name500','name5000','name500000','name50000','name5500000',
'name600','name6000','name600000','name60000','name6600000','name700','name7000','name700000','name70000','name7700000','name800',
'name8000','name800000','name80000','name6600000','name900','name9000','name900000','name90000','name9900000') 
-- 耗时  0.012s -0.014s 
-- 增加 order by name 耗时 0.014s - 0.017s

索引范围查询性能基本相同, 增加了order By后开始有一定性能差别;

3.验证全表查询和排序

全表无排序

图片

图片

全表有排序
select * from category_info_varchar_50 order by  name ;
--耗时 1.498s
select * from category_info_varchar_500 order by  name  ;
--耗时 4.875s

图片

图片

结论:

全表扫描无排序情况下,两者性能无差异,在全表有排序的情况下, 两种性能差异巨大;

分析原因
varchar50 全表执行sql分析

图片

我发现86%的时花在数据传输上,接下来我们看状态部分,关注Created_tmp_files和sort_merge_passes

图片

图片

Created_tmp_files为3

sort_merge_passes为95

varchar500 全表执行sql分析

图片

增加了临时表排序

图片

图片

Created_tmp_files 为 4

sort_merge_passes为645

关于sort_merge_passes, Mysql给出了如下描述:

Number of merge passes that the sort algorithm has had to do. If this value is large, you may want to increase the value of the sort_buffer_size.

其实sort_merge_passes对应的就是MySQL做归并排序的次数,也就是说,如果sort_merge_passes值比较大,说明sort_buffer和要排序的数据差距越大,我们可以通过增大sort_buffer_size或者让填入sort_buffer_size的键值对更小来缓解sort_merge_passes归并排序的次数。

四.最终结论

至此,我们不难发现,当我们最该字段进行排序操作的时候,Mysql会根据该字段的设计的长度进行内存预估, 如果设计过大的可变长度, 会导致内存预估的值超出sort_buffer_size的大小, 导致mysql采用磁盘临时文件排序,最终影响查询性能

相关文章:

MySQL 中 Varchar(50) 和 varchar(500) 区别是什么?

一. 问题描述 我们在设计表结构的时候&#xff0c;设计规范里面有一条如下规则: 对于可变长度的字段&#xff0c;在满足条件的前提下&#xff0c;尽可能使用较短的变长字段长度。 为什么这么规定&#xff1f;我在网上查了一下&#xff0c;主要基于两个方面 基于存储空间的考…...

强化RAG:微调Embedding还是LLM?

为什么我们需要微调&#xff1f; 微调有利于提高模型的效率和有效性。它可以减少训练时间和成本&#xff0c;因为它不需要从头开始。此外&#xff0c;微调可以通过利用预训练模型的功能和知识来提高性能和准确性。它还提供对原本无法访问的任务和领域的访问&#xff0c;因为它…...

提取 Excel单元格文本下的超链接

在Excel中&#xff0c;可以使用内置的函数来提取单元格中的超链接地址。如果你有一个包含超链接的单元格&#xff0c;例如B1&#xff0c;你可以使用以下步骤来提取这个超链接&#xff1a; 在一个新的单元格&#xff08;例如C1&#xff09;中&#xff0c;输入以下公式&#xff…...

一键安全体检!亚信安全携手鼎捷软件推出企业安全体检活动 正式上线

亚信安全联合鼎捷软件股份有限公司&#xff08;以下简称“鼎捷软件”&#xff09;正式推出“一键安全体检”服务。亚信安全网络安全专家将携手鼎捷软件数据安全专家&#xff0c;围绕企业的数智安全状况&#xff0c;进行问题探索与治愈、新问题预测与预警&#xff0c;在全面筛查…...

numpy - array(1)

一维数据&#xff1a;向量 二位数据&#xff1a;矩阵 维度超过三维的数据&#xff1a;张量 这些数据在numpy中统称array (1)使用穷举法创建多为数据,接受列表或者元组类型的数据 a numpy.array([1, 2, 3]) b numpy.array([[1, 2, 3], (4, 5, 6), [7, 8, 9]]) (2)创建所有元…...

师彼长技以助己(6)递归思维

师彼长技以助己&#xff08;6&#xff09;递归思维 递归思维-小游戏 思维小游戏 思维 小游戏&#xff1a;1 玩一个从1或2开始往上加的游戏&#xff0c;谁加到20就赢 如何保证一定赢呢&#xff1f;我们倒推&#xff0c;要先到20的话&#xff0c;谁先到17就赢&#xff0c;如此…...

Kali Linux 2024.2

Kali Linux 2024.2 版本&#xff08;t64、GNOME 46 和社区包&#xff09; 比平常晚了一点&#xff0c;但 Kali 2024.2 来了&#xff01;延迟是由于实现这一目标的幕后变化所致&#xff0c;这也是人们关注的焦点。社区提供了大量帮助&#xff0c;这次他们不仅添加了新的软件包&…...

【Spine学习08】之短飘,人物头发动效制作思路

上一节说完了跑步的&#xff0c; 这节说头发发型。 基础过程总结&#xff1a; 1.创建骨骼&#xff08;头发需要在上方加一个总骨骼&#xff09; 2.创建网格&#xff08;并绑定黄线&#xff09; 3.绑定权重&#xff08;发根位置的顶点赋予更多总骨骼的权重&#xff09; 4.切换到…...

chatgpt的命令词

人不走空 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌赋&#xff1a;斯是陋室&#xff0c;惟吾德馨 目录 &#x1f308;个人主页&#xff1a;人不走空 &#x1f496;系列专栏&#xff1a;算法专题 ⏰诗词歌…...

用python把docx批量转为pdf

为保证转换质量&#xff0c;本文的方法是通过脚本和com技术调用office自带的程序进行转换的&#xff0c;因此需要电脑已经装有office。如果希望不装office也能用&#xff0c;则需要研究OpenXML技术&#xff0c;后面实在闲的慌&#xff08;退休&#xff09;再搞。 安装所需库 …...

项目采购管理

目录 1.概述 2.三个子过程 2.1.规划采购管理 2.2.实施采购 2.3.控制采购 2.4.归属过程组 3.应用场景 3.1.十个应用场景 3.2.软件开发项目 3.2.1. 需求识别和分析 3.2.2. 制定采购计划 3.2.3. 发布采购请求 3.2.4. 供应商评估与选择 3.2.5. 合同签订 3.2.6. 采购…...

Elasticsearch 认证模拟题 - 18

一、题目 为一个索引&#xff0c;按要求设置以下 dynamic Mapping 一切 text 类型的字段&#xff0c;类型全部映射成 keyword一切以 int_ 开头命名的字段&#xff0c;类型都设置成 integer 1.1 考点 字段的动态映射 1.2 答案 # 创建索引和索引模板 PUT my_index {"m…...

Python基础-速记笔记

Python的基础数据类型都有哪些&#xff1f; 1、字符串(string)2、布尔类型(bool)3、整数(int) 4、浮点数(float)5、列表(list)6、集合(set)7、元组(tuple)8、字典(dict) 其中不可变类型有&#xff1a; 字符串(string)、布尔类型(bool)、整数(int) 、浮点数(float)、元组(tup…...

青少年编程与数学 01-001开始使用计算机 02课题、计算机操作系统3_3

青少年编程与数学 01-001开始使用计算机 02课题、计算机操作系统3_3 四、Linux操作系统安装&#xff08;一&#xff09; 准备工作&#xff08;二&#xff09;设置BIOS/UEFI&#xff08;三&#xff09; 安装Linux&#xff08;四&#xff09;磁盘分区&#xff08;五&#xff09;安…...

填表统计预约打卡表单系统(FastAdmin+ThinkPHP+UniApp)

填表统计预约打卡表单系统&#xff1a;一键搞定你的预约与打卡需求​ 填表统计预约打卡表单系统是一款基于FastAdminThinkPHPUniApp开发的一款集信息填表、预约报名&#xff0c;签到打卡、活动通知、报名投票、班级统计等功能的自定义表单统计小程序。 &#x1f4dd; 一、引言…...

IO模型和多路转接

叠甲&#xff1a;以下文章主要是依靠我的实际编码学习中总结出来的经验之谈&#xff0c;求逻辑自洽&#xff0c;不能百分百保证正确&#xff0c;有错误、未定义、不合适的内容请尽情指出&#xff01; 文章目录 1.IO 概要1.1.IO 低效原因1.2.IO 常见模型1.2.1.阻塞 IO1.2.2.非阻…...

如何完美解决升级 IntelliJ IDEA 最新版之后遇到 Git 记住密码功能失效的问题

&#x1f6e0;️ 如何完美解决升级 IntelliJ IDEA 最新版之后遇到 Git 记住密码功能失效的问题 摘要 在这篇文章中&#xff0c;我们将详细探讨如何解决在升级到 IntelliJ IDEA 最新版&#xff08;2024.1.3 Ultimate Edition&#xff09;后遇到的 Git 记住密码功能失效的问题。…...

SpringCloud微服务架构(eureka、nacos、ribbon、feign、gateway等组件的详细介绍和使用)

一、微服务演变 1、单体架构&#xff08;Monolithic Architecture&#xff09; 是一种传统的软件架构模式&#xff0c;应用程序的所有功能和组件都集中在一个单一的应用中。 在单体架构中&#xff0c;应用程序通常由一个大型的、单一的代码库组成&#xff0c;其中包含了所有…...

flinksql BUG : flink hologres-cdc source FINISHED

org.apache.flink.runtime.JobException: The failure is not recoverable or the failure does not allow to restart.at org.apache.flink.runtime.executiongraph.failover.flip1.ExecutionFailureHandler...

现代密码学-国密算法

商用密码算法种类 商用密码算法 密码学概念、协议与算法之间的依赖关系 数字签名、证书-公钥密码、散列类算法 消息验证码-对称密码 &#xff0c;散列类 安全目标与算法之间的关系 机密性--对称密码、公钥密码 完整性--散列类算法 可用性--散列类、公钥密码 真实性--公…...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API&#xff0c;用于在函数组件中使用 state 和其他 React 特性&#xff08;例如生命周期方法、context 等&#xff09;。Hooks 通过简洁的函数接口&#xff0c;解决了状态与 UI 的高度解耦&#xff0c;通过函数式编程范式实现更灵活 Rea…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势&#xff1a;专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发&#xff0c;是一款收费低廉但功能全面的Windows NAS工具&#xff0c;主打“无学习成本部署” 。与其他NAS软件相比&#xff0c;其优势在于&#xff1a; 无需硬件改造&#xff1a;将任意W…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

HBuilderX安装(uni-app和小程序开发)

下载HBuilderX 访问官方网站&#xff1a;https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本&#xff1a; Windows版&#xff08;推荐下载标准版&#xff09; Windows系统安装步骤 运行安装程序&#xff1a; 双击下载的.exe安装文件 如果出现安全提示&…...

Robots.txt 文件

什么是robots.txt&#xff1f; robots.txt 是一个位于网站根目录下的文本文件&#xff08;如&#xff1a;https://example.com/robots.txt&#xff09;&#xff0c;它用于指导网络爬虫&#xff08;如搜索引擎的蜘蛛程序&#xff09;如何抓取该网站的内容。这个文件遵循 Robots…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...