区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测
区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测
目录
- 区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
1.Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测(完整源码和数据)
2.BP神经网络自适应带宽核密度估计多变量回归区间预测(点预测+概率预测+核密度估计) Matlab语言
3.多变量单输出,包括点预测+概率预测+核密度估计曲线,MatlabR2021a及以上版本运行,提供多种置信区间!评价指标包括R2、MAE、RMSE、MAPE、区间覆盖率picp、区间平均宽度百分比pinaw等。
4.算法新颖,对固定带宽核函数进行了改进。
5.直接替换Excel数据即可用,注释清晰,适合新手小白,直接运行main文件一键出图。
6.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据获取方式私信博主回复Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_samples = size(res, 1); % 样本个数
%res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 创建网络
net = newff(p_train, t_train, 9);%% 设置训练参数
net.trainParam.epochs = 1000; % 迭代次数
net.trainParam.goal = 1e-2; % 误差阈值
net.trainParam.lr = 0.01; % 学习率%% 训练网络
net = train(net, p_train, t_train);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% *区间预测* (基于KDE)
z = [0.975;0.95;0.875;0.75;0.625;0.55;0.525]; %分位数%% *值评估指标*
[Error] = PlotError(T_sim1,T_train,N,'#3D59AB');
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340
相关文章:

区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测
区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测 目录 区间预测 | Matlab实现BP-ABKDE的BP神经网络自适应带宽核密度估计多变量回归区间预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现BP-ABKDE的BP神经网络自适应带…...

抢占人工智能行业红利,前阿里巴巴产品专家带你15天入门AI产品经理
前言 当互联网行业巨头纷纷布局人工智能,国家将人工智能上升为国家战略,藤校核心课程涉足人工智能…人工智能领域蕴含着巨大潜力,早已成为业内共识。 面对极大的行业空缺,不少人都希望能抢占行业红利期,进入AI领域。…...

MEMS:Lecture 16 Gyros
陀螺仪原理 A classic spinning gyroscope measures the rotation rate by utilizing the conservation of angular momentum. 经典旋转陀螺仪通过利用角动量守恒来测量旋转速率。 Coriolis Effect and Coriolis Force 科里奥利效应是一种出现在旋转参考系中的现象。它描述了…...

Java中List流式转换为Map的终极指南
哈喽,大家好,我是木头左! 在Java编程中,经常需要将一个List对象转换为另一个Map对象。这可能是因为需要根据List中的元素的某些属性来创建一个新的键值对集合。在本文中,我将向您展示如何使用Java 中的流式API轻松地实…...

【秋招突围】2024届秋招笔试-小红书笔试题-第一套-三语言题解(Java/Cpp/Python)
🍭 大家好这里是清隆学长 ,一枚热爱算法的程序员 ✨ 本系计划跟新各公司春秋招的笔试题 💻 ACM银牌🥈| 多次AK大厂笔试 | 编程一对一辅导 👏 感谢大家的订阅➕ 和 喜欢💗 📧 清隆这边…...

HAL库开发--STM32的HAL环境搭建
知不足而奋进 望远山而前行 目录 文章目录 前言 下载 安装 解压 安装 添加开发包 修改仓库路径 下载软件开发包(慢,不推荐) 解压已有软件开发包(快,推荐) 总结 前言 在嵌入式系统开发中&#x…...
【DPDK学习路径】七、创建RX/TX队列
上一节我们讲述了如何申请内存池缓冲区以便接下来创建 RX 队列,这一节我们将给出具体如何创建 RX/TX 队列。 在 DPDK 中提供了 rte_eth_rx_queue_setup 及 rte_eth_tx_queue_setup 这两个接口用于接收/发送队列的创建。 下面给出一个为各个网卡创建RX/TX 队列的实例…...

【ArcGISProSDK】OpenItemDialog打开文件对话框
打开单个文件 效果 代码 public async void OpenFunction() {// 获取默认数据库var gdbPath Project.Current.DefaultGeodatabasePath;OpenItemDialog openItemDialog new OpenItemDialog() { Title "打开要素文件",InitialLocation gdbPath,Filter ItemFilte…...

TensorFlow2.x基础与mnist手写数字识别示例
文章目录 Github官网文档Playground安装声明张量常量变量 张量计算张量数据类型转换张量数据维度转换ReLU 函数Softmax 函数卷积神经网络训练模型测试模型数据集保存目录显示每层网络的结果 TensorFlow 是一个开源的深度学习框架,由 Google Brain 团队开发和维护。它…...
大数据开发语言Scala入门
Scala是一种多范式编程语言,它集成了面向对象编程和函数式编程的特性。Scala运行在Java虚拟机上,并且可以与Java代码无缝交互,这使得它成为大数据处理和分析领域中非常受欢迎的语言,尤其是在使用Apache Spark这样的框架时。 Scal…...

【CDN】逆天 CDN !BootCDN 向 JS 文件中植入恶意代码
今天在调试代码,突然控制台出现了非常多报错。 这非常可疑,报错指向的域名也证实了这一点。 因为我的 HTML 中只有一个外部开源库(qrcode.min.js),因此只有可能是它出现了问题。 我翻看了请求记录,发现这…...

摆脱Jenkins - 使用google cloudbuild 部署 java service 到 compute engine VM
在之前 介绍 cloud build 的文章中 初探 Google 云原生的CICD - CloudBuild 已经介绍过, 用cloud build 去部署1个 spring boot service 到 cloud run 是很简单的, 因为部署cloud run 无非就是用gcloud 去部署1个 GAR 上的docker image 到cloud run 容…...

【CS.PL】Lua 编程之道: 控制结构 - 进度24%
3 初级阶段 —— 控制结构 文章目录 3 初级阶段 —— 控制结构3.1 条件语句:if、else、elseif3.2 循环语句:for、while、repeat-until3.2.1 输出所有的命令行参数3.2.2 while.lua3.2.3 repeat.lua及其作用域 🔥3.2.4 for.lua (For Statement)…...

从“数据孤岛”、Data Fabric(数据编织)谈逻辑数据平台
提到逻辑数据平台,其核心在于“逻辑”,与之相对的便是“物理”。在过去,为了更好地利用和管理数据,我们通常会选择搭建数据仓库和数据湖,将所有数据物理集中起来。但随着数据量、用数需求和用数人员的持续激增…...
vuex4.x 升级pinia,router 中使用同步组件导致项目启动失败
背景描述 升级的项目本来是vue2的项目,先升级成vue3,这个过程相关的问题都被决绝,当时状态管理使用的还是vuex4.x版本。 后面发现变成复杂模块时,后续再对复杂模块的功能进行迭代时,由于js的弱类型,改动时…...

0. 云原生之基于乌班图远程开发
云原生专栏大纲 文章目录 安装乌班图配置静态IP重置root密码开启root远程登录开启远程SSH访问安装docker安装docker-compose安装Edge浏览器安装搜狗输入法安装TeamViewer安装虚拟显示器安装JDK安装maven安装vscodevscode插件安装VSCode配置maven、git、jdk、自动报错vscode快捷…...
C++ 字符串处理5-手机号邮箱如何脱敏处理
1. 关键词2. strutil.h3. strutil.cpp4. 测试代码5. 运行结果6. 源码地址 1. 关键词 关键词: C 字符串处理 分割字符串 连接字符串 跨平台 应用场景: 有些重要信息需要保密,比如手机号、邮箱等,如何在不影响用户阅读的情况下…...
【lesson8】云备份服务端完整版代码
文章目录 util.hppconfig.hpphot.hppdata.hppserver.hppserver.ccMakefilecloud.conf util.hpp #pragma once #include <iostream> #include <fstream> #include <string> #include <vector> #include <sys/stat.h> #include <unistd.h> …...

AI办公自动化:kimi批量搜索提取PDF文档中特定文本内容
工作任务:PDF文档中有资料来源这一行,比如: 资料来源:moomoo tech、The Information、Bloomberg、Reuters,浙商证券研究所 数据来源:CSDN、浙商证券研究所 数据来源:CSDN、arXiv、浙商证券研…...

基于C#开发web网页管理系统模板流程-总集篇
第一篇 基于C#开发web网页管理系统模板流程-登录界面和主界面_c#的网页编程-CSDN博客 第二篇 基于C#开发web网页管理系统模板流程-主界面管理员录入和编辑功能完善_c#网页设计-CSDN博客 第三篇 基于C#开发web网页管理系统模板流程-主界面管理员入库和出库功能完善_c#web程序设计…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
是否存在路径(FIFOBB算法)
题目描述 一个具有 n 个顶点e条边的无向图,该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序,确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数,分别表示n 和 e 的值(1…...

Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...

(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...

C++_哈希表
本篇文章是对C学习的哈希表部分的学习分享 相信一定会对你有所帮助~ 那咱们废话不多说,直接开始吧! 一、基础概念 1. 哈希核心思想: 哈希函数的作用:通过此函数建立一个Key与存储位置之间的映射关系。理想目标:实现…...
python打卡第47天
昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...
Python第七周作业
Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt,并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径,并创建logs目录(若不存在) 3.递归遍历目录data,输出所有.csv文件的路径…...