支持向量机(SVM)中核函数的本质意义
本质上在做什么?
内积是距离度量,核函数相当于将低维空间的距离映射到高维空间的距离,并非对特征直接映射。
为什么要求核函数是对称且Gram矩阵是半正定?
核函数对应某一特征空间的内积,要求①核函数对称;②Gram矩阵半正定。
证明内积对应的Gram矩阵半正定:
α T K α = [ α 1 , α 2 , ⋯ , α n ] [ κ ( x 1 , x 1 ) κ ( x 1 , x 2 ) ⋯ κ ( x 1 , x n ) κ ( x 2 , x 1 ) κ ( x 2 , x 2 ) ⋯ κ ( x 1 , x n ) ⋮ ⋮ ⋱ ⋮ κ ( x n , x 1 ) κ ( x n , x 2 ) ⋯ κ ( x n , x n ) ] [ α 1 α 2 ⋮ α n ] = ∑ i = 1 n ∑ j = 1 n α i κ ( x i , x j ) α j = ∑ i = 1 n ∑ j = 1 n α i α j ⟨ ϕ ( x i ) , ϕ ( x j ) ⟩ = ⟨ ∑ i = 1 n α i ϕ ( x i ) , ∑ j = 1 n α j ϕ ( x j ) ⟩ = ∥ ∑ i = 1 n α i ϕ ( x i ) ∥ 2 2 ⩾ 0 \begin{aligned} {{ \bm \alpha}^{\rm T} {\bm K} { \bm \alpha}} &=\begin{bmatrix} {\alpha}_1, {\alpha}_2, \cdots, {\alpha}_n \end{bmatrix} \begin{bmatrix} \kappa \left( {\bm x}_1, {\bm x}_1 \right) &\kappa \left( {\bm x}_1, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \kappa \left( {\bm x}_2, {\bm x}_1 \right) &\kappa \left( {\bm x}_2, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_1, {\bm x}_n \right) \\ \vdots &\vdots &\ddots &\vdots \\ \kappa \left( {\bm x}_n, {\bm x}_1 \right) &\kappa \left( {\bm x}_n, {\bm x}_2 \right) &\cdots &\kappa \left( {\bm x}_n, {\bm x}_n \right) \\ \end{bmatrix} \begin{bmatrix} {\alpha}_1 \\ {\alpha}_2 \\ \vdots \\ {\alpha}_n \\ \end{bmatrix} \\ &= \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} {\alpha}_i \kappa \left( {\bm x}_i, {\bm x}_j \right) {\alpha}_j \\ &= \sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} {\alpha}_i {\alpha}_j \langle \phi \left( {\bm x}_i \right), \phi \left( {\bm x}_j \right) \rangle\\ &= \langle \sum\limits_{i=1}^{n} {\alpha}_i \phi \left( {\bm x}_i \right), \sum\limits_{j=1}^{n} {\alpha}_j \phi \left( {\bm x}_j \right) \rangle \\ &= \lVert \sum\limits_{i=1}^{n} {\alpha}_i \phi \left( {\bm x}_i \right) \rVert^2_2 \\ &\geqslant 0 \end{aligned} αTKα=[α1,α2,⋯,αn] κ(x1,x1)κ(x2,x1)⋮κ(xn,x1)κ(x1,x2)κ(x2,x2)⋮κ(xn,x2)⋯⋯⋱⋯κ(x1,xn)κ(x1,xn)⋮κ(xn,xn) α1α2⋮αn =i=1∑nj=1∑nαiκ(xi,xj)αj=i=1∑nj=1∑nαiαj⟨ϕ(xi),ϕ(xj)⟩=⟨i=1∑nαiϕ(xi),j=1∑nαjϕ(xj)⟩=∥i=1∑nαiϕ(xi)∥22⩾0
相关文章:
支持向量机(SVM)中核函数的本质意义
本质上在做什么? 内积是距离度量,核函数相当于将低维空间的距离映射到高维空间的距离,并非对特征直接映射。 为什么要求核函数是对称且Gram矩阵是半正定? 核函数对应某一特征空间的内积,要求①核函数对称;②…...

SpringBoot使用jasypt实现数据库信息的脱敏,以此来保护数据库的用户名username和密码password(容易上手,详细)
1.为什么要有这个需求? 一般当我们自己练习的时候,username和password直接是爆露出来的 假如别人路过你旁边时看到了你的数据库账号密码,他跑到他的电脑打开navicat直接就是一顿连接,直接疯狂删除你的数据库,那可就废…...
Python日志配置策略
1 三种情况下都能实现日志打印: 被库 A 调用,使用库 A 的日志配置。被库 B 调用,使用库 B 的日志配置。独立运行,使用自己的日志配置。 需要实现一个灵活的日志配置策略,使得日志记录器可以根据调用者或运行环境自动…...

想学编程,什么语言最好上手?
Python是许多初学者的首选,因为它的语法简洁易懂,而且有丰富的资源和社区支持。我这里有一套编程入门教程,不仅包含了详细的视频 讲解,项目实战。如果你渴望学习编程,不妨点个关注,给个评论222,…...
binlog和redolog有什么区别
在数据库管理系统中,binlog(binary log)和 redolog(redo log)是两种重要的日志机制,它们在数据持久性和故障恢复方面扮演着关键角色。虽然它们都用于记录数据库的变化,但它们的目的和使用方式有…...

Linux笔记--ubuntu文件目录+命令行介绍
文件目录 命令行介绍 当我们在ubuntu中命令行处理位置输入ls后会显示出其所有目录,那么处理这些命令的程序就是shell,它负责接收用户的输入,并根据输入找到其他程序并运行 命令行格式 linux的命令一般由三部分组成:command命令、…...
71、最长上升子序列II
最长上升子序列II 题目描述 给定一个长度为N的数列,求数值严格单调递增的子序列的长度最长是多少。 输入格式 第一行包含整数N。 第二行包含N个整数,表示完整序列。 输出格式 输出一个整数,表示最大长度。 数据范围 1 ≤ N ≤ 100000…...

解决必剪电脑版导出视频缺斤少两的办法
背景 前几天将电脑重置了,今天想要剪辑一下视频,于是下载了必剪,将视频、音频都调整好,导出,结果15分钟的视频只能导出很短的时长,调整参数最多也只能导出10分钟,My God! 解决 首…...
新人学习笔记之(常量)
一、什么是常量 1.常量:在程序的执行过程中,其值不能发生改变的数据 二、常量的分类 常量类型说明举例整型常量整数、负数、0123 456实型常量所有带小数点的数字1.93 18.2字符常量单引号引起来的字母、数字、英文符号S B字符串常量双引号引起来的&…...

Lua解释器裁剪
本文目录 1、引言2、文件功能3、选择需要初始化的库4、结论 文章对应视频教程: 已更新。见下方 点击图片或链接访问我的B站主页~~~ Lua解释器裁剪,很简单~ 1、引言 在嵌入式中使用lua解释器,很多时候会面临资源紧张的情况。 同时,…...
web前端设计nav:深入探索导航栏设计的艺术与技术
web前端设计nav:深入探索导航栏设计的艺术与技术 在web前端设计中,导航栏(nav)扮演着至关重要的角色,它不仅是用户浏览网站的指引,更是网站整体设计的点睛之笔。本文将从四个方面、五个方面、六个方面和七…...
分析解读NCCL_SHM_Disable与NCCL_P2P_Disable
在NVIDIA的NCCL(NVIDIA Collective Communications Library)库中,NCCL_SHM_Disable 和 NCCL_P2P_Disable 是两个重要的环境变量,它们控制着NCCL在多GPU通信中的行为和使用的通信机制。下面是对这两个环境变量的详细解读࿱…...

使用 Python 进行测试(6)Fake it...
总结 如果我有: # my_life_work.py def transform(param):return param * 2def check(param):return "bad" not in paramdef calculate(param):return len(param)def main(param, option):if option:param transform(param)if not check(param):raise ValueError(…...
Flink Watermark详解
Flink Watermark详解 一、概述 Flink Watermark是Apache Flink框架中为了处理乱序和延迟事件时间数据而引入的一种机制。在流处理中,由于数据可能不是按照事件产生的时间顺序到达的,Watermark被用来告知系统在该时间戳之前的数据已经全部到达ÿ…...
LeetCode538.把二叉搜索树转换为累加树
class Solution { public:int sum 0; TreeNode* convertBST(TreeNode* root) { if (root){convertBST(root->right);sum root->val;root->val sum;convertBST(root->left);}return root;}};...
关于编程思想
面向过程思想 面向过程就是分析出解决问题所需要的步骤,然后用函数把这些步骤一步一步实现,使用的时候再一个一个的依次调用就可以了 JS就是典型的面向过程的编程语言 优点: 性能比面向对象编程高,适合跟硬件联系很紧密的东西…...

521. 最长特殊序列 Ⅰ(Rust单百解法-脑筋急转弯)
题目 给你两个字符串 a 和 b,请返回 这两个字符串中 最长的特殊序列 的长度。如果不存在,则返回 -1 。 「最长特殊序列」 定义如下:该序列为 某字符串独有的最长 子序列 (即不能是其他字符串的子序列) 。 字符串 s …...

【YashanDB知识库】PHP使用OCI接口使用数据库绑定参数功能异常
【问题分类】驱动使用 【关键字】OCI、驱动使用、PHP 【问题描述】 PHP使用OCI8连接yashan数据库,使用绑定参数获取数据时,出现报错 如果使用PDO_OCI接口连接数据库,未弹出异常,但是无法正确获取数据 【问题原因分析】 开启O…...

深入分析 Android BroadcastReceiver (三)
文章目录 深入分析 Android BroadcastReceiver (三)1. 广播消息的优缺点及使用场景1.1 优点1.2 缺点 2. 广播的使用场景及代码示例2.1. 系统广播示例:监听网络状态变化 2.2. 自定义广播示例:发送自定义广播 2.3. 有序广播示例:有序广播 2.4. …...
在java中使用Reactor 项目中的一个类Mono,用于表示异步单值操作
Mono 是 Reactor 项目中的一个类,用于表示异步单值操作。Reactor 是一个响应式编程库,广泛应用于 Java 中的异步编程和非阻塞 I/O 操作。Mono 可以类比为一个可能(或将来)包含零个或一个值的异步计算结果。与 Flux(另一…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

基于Docker Compose部署Java微服务项目
一. 创建根项目 根项目(父项目)主要用于依赖管理 一些需要注意的点: 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件,否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...

Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...

ubuntu22.04有线网络无法连接,图标也没了
今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

02.运算符
目录 什么是运算符 算术运算符 1.基本四则运算符 2.增量运算符 3.自增/自减运算符 关系运算符 逻辑运算符 &&:逻辑与 ||:逻辑或 !:逻辑非 短路求值 位运算符 按位与&: 按位或 | 按位取反~ …...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...