当前位置: 首页 > news >正文

Bio-Info每日一题:Rosalind-07-Mendel‘s First Law(孟德尔第一定律 python实现)

🎉 进入生物信息学的世界,与Rosalind一起探索吧!🧬
Rosalind是一个在线平台,专为学习和实践生物信息学而设计。该平台提供了一系列循序渐进的编程挑战,帮助用户从基础到高级掌握生物信息学知识。无论你是初学者还是专业人士,Rosalind都能为你提供适合的学习资源和实践机会。网址:https://rosalind.info
你是否想像专业人士一样分析DNA序列?这里有一个简单的任务来帮助你入门。
📝 任务说明:
请添加图片描述

这个题目是要你计算在一群具有不同基因型的个体中,两两随机交配后,后代中表现显性性状的概率。题目给出了三种基因型的个体数量:

  • k: 纯合显性个体的数量(homozygous dominant, AA)
  • m: 杂合个体的数量(heterozygous, Aa)
  • n: 纯合隐性个体的数量(homozygous recessive, aa)
    需要计算两两随机选取个体交配后,后代表现显性性状(具有显性等位基因)的概率。

解答

可能的配对及其概率

  • AA×AA:总是产生 AA(100% 显性)

  • AA×Aa(或 Aa×AA):产生 50% AA 和 50% Aa(100% 显性)

  • AA×aa(或 aa×AA):总是产生 Aa(100% 显性)

  • Aa×Aa:产生 25% AA、50% Aa 和 25% aa(75% 显性)

  • Aa×aa(或 aa×Aa):产生 50% Aa 和 50% aa(50% 显性)

  • aa×aa:总是产生 aa(0% 显性)
    每种配对的概率计算
    请添加图片描述

  • 计算最终的概率:

    • 最终的概率是上述每种配对概率与其产生显性表型概率的乘积之和。
def dominant_phenotype_probability(k, m, n):# 总个体数total = k + m + n# 各种配对产生显性表型的概率prob_AA_AA = (k / total) * ((k - 1) / (total - 1))prob_AA_Aa = 2 * (k / total) * (m / (total - 1))prob_AA_aa = 2 * (k / total) * (n / (total - 1))prob_Aa_Aa = (m / total) * ((m - 1) / (total - 1))prob_Aa_aa = 2 * (m / total) * (n / (total - 1))prob_aa_aa = (n / total) * ((n - 1) / (total - 1))# 显性表型的总概率probability = (prob_AA_AA * 1 +prob_AA_Aa * 1 +prob_AA_aa * 1 +prob_Aa_Aa * 0.75 +prob_Aa_aa * 0.5 +prob_aa_aa * 0)return probabilitydef main():# 从输入读取数据k = int(input("请输入显性纯合体(AA)的个体数: "))m = int(input("请输入杂合体(Aa)的个体数: "))n = int(input("请输入隐性纯合体(aa)的个体数: "))# 计算并打印概率result = dominant_phenotype_probability(k, m, n)print(f"产生显性表型后代的概率: {result:.5f}")if __name__ == "__main__":main()

补充

孟德尔第一定律,也称为分离律(Law of Segregation),是孟德尔在研究豌豆遗传实验时发现的基本遗传定律之一。该定律描述了在生殖细胞形成过程中,等位基因如何分离并在后代中重新组合的现象。具体内容如下:

  1. 等位基因分离:每个个体有一对等位基因控制某一特定性状(例如豌豆的颜色),这些等位基因在生殖细胞(配子)形成时会分离。每个配子只会携带其中一个等位基因。

  2. 随机组合:受精时,来自父本和母本的配子随机结合,从而形成新的基因型。这意味着后代的基因型是随机组合的,具有不同的等位基因组合。
    孟德尔通过研究豌豆的性状,如花的颜色和种子的形状,发现了这种分离现象。具体来说,他注意到当他交配纯合显性个体和纯合隐性个体时,第一代子代(F1代)全部表现出显性性状,而第二代子代(F2代)则按3:1的比例分离出显性和隐性性状。
    以下是对孟德尔第一定律的简要总结:

  • 每个性状由一对等位基因控制。
  • 在形成配子时,等位基因分离,每个配子只包含一个等位基因。
  • 受精时,来自父母双方的等位基因随机结合,决定后代的基因型和表现型。

相关文章:

Bio-Info每日一题:Rosalind-07-Mendel‘s First Law(孟德尔第一定律 python实现)

🎉 进入生物信息学的世界,与Rosalind一起探索吧!🧬 Rosalind是一个在线平台,专为学习和实践生物信息学而设计。该平台提供了一系列循序渐进的编程挑战,帮助用户从基础到高级掌握生物信息学知识。无论你是初…...

C++ 47 之 函数调用运算符重载

#include <iostream> #include <string> using namespace std;class MyPrint{ public:// 重载小括号() 重载谁operator后就紧跟谁的符号void operator()(string txt){cout << txt << endl;} };class MyAdd{ public:int operator()(int a, int b){retur…...

[Qt的学习日常]--常用控件1

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、什么是控…...

模型实战(23)之 yolov10 使用总结及训练自己的数据集

yolov10 使用总结及训练自己的数据集 0. yolov10 原理分析 此处参考:https://blog.csdn.net/CVHub/article/details/139204248论文:https://arxiv.org/pdf/2405.14458源码:https://github.com/THU-MIG/yolov10 论文原理分析: 创新: 双标签分配策略 众所周知,标签分配策略…...

AIRNet模型使用与代码分析(All-In-One Image Restoration Network)

AIRNet提出了一种较为简易的pipeline&#xff0c;以单一网络结构应对多种任务需求&#xff08;不同类型&#xff0c;不同程度&#xff09;。但在效果上看&#xff0c;ALL-In-One是不如One-By-One的&#xff0c;且本文方法的亮点是batch内选择patch进行对比学习。在与sota对比上…...

欧洲杯“球迷狂欢趴”开启,容声带来“健康养鲜”新理念

6月15日&#xff0c;容声冰箱在深圳举行了异彩纷呈的“欧洲杯养鲜补给站 球迷狂欢趴”系列活动。 容声国内营销总经理韩栋现场发布“以品质领先 为健康养鲜”的主题内容&#xff0c;强调容声将以健康养鲜技术产品的升级迭代&#xff0c;满足用户品质生活需求。 作为有着41年发…...

人工智能对零售业的影响

机器人、人工智能相关领域 news/events &#xff08;专栏目录&#xff09; 本文目录 一、人工智能如何改变零售格局二、利用人工智能实现购物体验自动化三、利用人工智能改善库存管理四、通过人工智能解决方案增强客户服务五、利用人工智能分析消费者行为六、利用 AI 打造个性化…...

Spring Boot + EasyExcel + SqlServer 进行批量处理数据

前言 在日常开发和工作中&#xff0c;我们可能要根据用户上传的文件做一系列的处理&#xff0c;本篇文章就以Excel表格文件为例&#xff0c;模拟用户上传Excel文件&#xff0c;讲述后端如何高效的进行数据的处理。 一.引入 EasyExcel 依赖 <!-- https://mvnrepository.com/…...

深入理解指针(四)

目录 1. 回调函数是什么? ​2. qsort使用举例 2.1冒泡排序 2.2使用qsort函数排序整型数据 ​2.3 使用qsort排序结构数据(名字) 2.4 使用qsort排序结构数据(年龄) 3. qsort函数的模拟实现 1. 回调函数是什么? 回调函数就是⼀个通过函数指针调⽤的函数。 如果你把函数…...

k-means聚类模型的优缺点

一、k-means聚类模型的优点 1. 简单高效&#xff1a;k-means算法思想简单直观&#xff0c;易于实现。它通过迭代计算样本点与聚类中心之间的距离&#xff0c;并不断调整聚类中心的位置&#xff0c;直至满足终止条件。由于其计算过程相对直接&#xff0c;所以具有较高的执行效率…...

我的创作纪念日(1825天)

Ⅰ、机缘 1. 记得是大一、大二的时候就听学校的大牛说&#xff0c;可以通过写 CSDN 博客&#xff0c;来提升自己的代码和逻辑能力&#xff0c;虽然即将到了写作的第六个年头&#xff0c;但感觉这句话依旧受用; 2、今年一整年的创作都没有停止&#xff0c;本年度几乎是每周都来…...

Studio One 6.6.2 for Mac怎么激活,有Studio One 6激活码吗?

如果您是一名音乐制作人&#xff0c;您是否曾经为了寻找一个合适的音频工作站而苦恼过&#xff1f;Studio One 6 for Mac是一款非常适合您的MacBook的音频工作站。它可以帮助您轻松地录制、编辑、混音和发布您的音乐作品。 Studio One 6.6.2 for Mac具有直观的界面和强大的功能…...

Windows搭建nacos集群

Nacos是阿里巴巴的产品&#xff0c;现在是SpringCloud中的一个组件。相比Eureka功能更加丰富&#xff0c;在国内受欢迎程度较高。 下载地址&#xff1a;Tags alibaba/nacos GitHub 链接&#xff1a;百度网盘 请输入提取码 提取码&#xff1a;8888 解压文件夹 目录说明&am…...

kotlin 中的字符

一、字符类型 1、kotlin中&#xff0c;字符用Char类型表示&#xff0c;值使用单引号 括起来。 fun main() {val a: Char 1println(a) // 1println("a类型为&#xff1a;${a.javaClass.simpleName}") // a类型为&#xff1a;char } 2、特殊字符的表示。 \t——制…...

yocto根文件系统如何配置静态IP地址

在Yocto根文件系统中配置静态IP地址&#xff0c;你可以参考以下步骤。请注意&#xff0c;这些步骤可能会因Yocto版本和具体硬件平台的不同而略有差异。 1. 获取网络配置信息 首先&#xff0c;你需要从网络运维方获取分配的IP地址、子网掩码、默认网关和DNS信息。 2. 确定配置文…...

【博客720】时序数据库基石:LSM Tree的辅助优化

时序数据库基石&#xff1a;LSM Tree的辅助优化 场景&#xff1a; LSM Tree其实本质是一种思想&#xff0c;而具体是否需要WAL&#xff0c;内存表用什么有序数据结构来组织&#xff0c;磁盘上的SSTable用什么结构来存放&#xff0c;是否需要布隆过滤器来加快不存在数据的判断等…...

C++前期概念(重)

目录 命名空间 命名空间定义 1. 正常的命名空间定义 2. 命名空间可以嵌套 3.头文件中的合并 命名空间使用 命名空间的使用有三种方式&#xff1a; 1:加命名空间名称及作用域限定符&#xff08;::&#xff09; 2:用using将命名空间中某个成员引入 3:使用using namespa…...

Java字符串加密HMAC-SHA1密钥,转换成Base64编码

新建一个maven测试项目&#xff0c;直接把代码复制过去就行&#xff0c;把data和secretKey的值替换成想加密的值。 package test;import javax.crypto.Mac; import javax.crypto.spec.SecretKeySpec; import java.security.InvalidKeyException; import java.security.NoSuchA…...

【网络架构】Nginx

目录 一、I/O模型 1.1 Linux 的 I/O 1.2 零拷贝技术 1.3 网络IO模型 1.3.1 阻塞型 I/O 模型&#xff08;blocking IO&#xff09;​编辑 1.3.2非阻塞型 I/O 模型 (nonblocking IO)​编辑 1.3.3 多路复用 I/O 型 ( I/O multiplexing )​编辑 1.3.4 信号驱动式 I/O 模型 …...

C# OpenCvSharp 逻辑运算-bitwise_and、bitwise_or、bitwise_not、bitwise_xor

bitwise_and 函数 🤝 作用或原理: 将两幅图像进行与运算,通过逻辑与运算可以单独提取图像中的某些感兴趣区域。如果有掩码参数,则只计算掩码覆盖的图像区域。 示例: 在实际应用中,可以用 bitwise_and 来提取图像中的某些部分。例如,我们可以从图像中提取出一个特定的颜…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存

文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...