当前位置: 首页 > news >正文

困惑度作为nlp指标的理解示例

为了更清晰地说明困惑度的计算过程以及如何通过困惑度判断模型的优劣,我们可以通过一个简单的例子来演示。假设我们有一个非常简单的文本语料库和两个基础的语言模型进行比较。

示例文本

假设我们的文本数据包括以下两个句子:

“cat sits on the mat”
“dog sits on the log”

语言模型

我们构建两个不同的语言模型来预测句子中的下一个词:

模型 A:一个简单的统计模型,根据句子中词的实际出现频率来预测下一个词。

模型 B:一个随机预测模型,随机选择任何一个词作为下一个词的预测。

模型 A 的预测能力

对于句子 “cat sits on the mat”:

模型 A 观察到 “cat” 和 “dog” 各出现一次,因此预测 “sits” 的概率是 50%。
观察到 “sits” 后面跟着 “on” 的概率是 100%。
类似地,“on” 后 “the” 的概率是 100%,“the” 后 “mat” 或 “log” 的概率各为 50%。

模型 B 的预测能力

模型 B 不考虑以前的词,随机预测下一个词,假设词汇表有五个词(cat, dog, sits, on, the, mat, log),每个词的概率都是 1/7。

困惑度的计算

对于每个模型,我们可以计算困惑度如下:

在这里插入图片描述

模型评估

通过比较两个模型的困惑度:

模型 A 的困惑度约为 1.3195,远低于 模型 B 的 7。低困惑度表明模型 A 对文本结构的预测更加精确,因此是一个更好的模型。
模型 B 由于完全是随机预测,其困惑度高,预测能力差。

这个例子说明了困惑度如何帮助我们评估和比较不同语言模型的预测效果。低困惑度通常意味着模型具有更好的预测性能和更低的不确定性,因此在实际应用中更为可靠

相关文章:

困惑度作为nlp指标的理解示例

为了更清晰地说明困惑度的计算过程以及如何通过困惑度判断模型的优劣,我们可以通过一个简单的例子来演示。假设我们有一个非常简单的文本语料库和两个基础的语言模型进行比较。 示例文本 假设我们的文本数据包括以下两个句子: “cat sits on the mat”…...

01 Pytorch 基础

paddle不需要放数据到gpu! 区别:1.batch_norlization 不同 2. 1.数据处理 1.取一个数据,以及计算大小 (剩下的工作,取batch,pytorch会自动做好了) 2.模型相关 如何得到结果 3.模型训练/模型…...

STL——set、map、multiset、multimap的介绍及使用

文章目录 关联式容器键值对树形结构与哈希结构setset的介绍set的使用set的模板参数列表set的构造set的使用set的迭代器使用演示 multisetmultiset演示 mapmap的定义方式map的插入map的查找map的[ ]运算符重载map的迭代器遍历multimapmultimap的介绍multimap的使用 在OJ中的使用…...

使用C语言,写一个类似Linux中执行cat命令的类似功能

一、详细的代码案例 #include <stdio.h> #include <stdlib.h> #include <string.h>// 函数声明 void cat_file(const char *filename);int main(int argc, char *argv[]) {if (argc < 2) {fprintf(stderr, "Usage: %s filename1 [filename2 ...]\n&…...

【Android】Android系统性学习——Android系统架构

前言 部分内容参考《Android进阶解密》 – 刘望舒 1. Android版本 官方链接&#xff1a;https://developer.android.com/studio/releases/platforms 里面有各个版本的官方文档&#xff0c;有些新功能的用法在这里面。 现在做安卓11&#xff0c;有时候需要向下兼容 2. AOSP …...

鸿蒙应用开发

学习视频&#xff1a; 00.课程介绍_哔哩哔哩_bilibili 官网&#xff1a;开发者文档中心 | 华为开发者联盟 (huawei.com) 开发工具 &#xff1a;DevEcoStudio &#xff0c; 类似Jetbrains 全家桶 ArkTS开发语言 &#xff1a;&#xff08;基于TS,集成了前端语言&#xf…...

索引失效有效的11种情况

1全职匹配我最爱 是指 where 条件里 都是 &#xff0c;不是范围&#xff08;比如&#xff1e;,&#xff1c;&#xff09;&#xff0c;不是 不等于&#xff0c;不是 is not null&#xff0c;然后 这几个字段 建立了联合索引 &#xff0c;而且符合最左原则。 那么就要比 只建…...

字符数组基础知识及题目

死识。。。 字符该如何存储呢&#xff1f;这一点我们在以前就接触过了。用char来存储。 如何输入一个单词呢&#xff1f; char a[10002]; scanf("%s",a); 就不用地址符了。 如何输入句子呢&#xff1f; char a[100002]; gets(a); gets是读入句子的&#xff0c…...

一个简单的玩具机器人代码

编写一个玩具机器人脚本通常取决于机器人的硬件、接口和具体功能。然而&#xff0c;由于我们不能直接控制一个真实的硬件机器人&#xff0c;所以只是写一个模拟的C语言脚本示例&#xff0c;该脚本描述了一个简单的玩具机器人可能执行的一些基本操作。 假设我们的“玩具机器人”…...

设计模式-装饰器模式Decorator(结构型)

装饰器模式(Decorator) 装饰器模式是一种结构模式&#xff0c;通过装饰器模式可以在不改变原有类结构的情况下向一个新对象添加新功能&#xff0c;是现有类的包装。 图解 角色 抽象组件&#xff1a;定义组件的抽象方法具体组件&#xff1a;实现组件的抽象方法抽象装饰器&…...

RK3588开发板中使用Qt对zip文件进行解压

操作步骤&#xff1a; 下载源码quazip-0.7.3.zip &#xff0c;在网上找找下载地址上传源码进行解压&#xff0c;然后使用命令 cd quazip-0.7.3 qmake make主要用的是quazip-0.7.3/quazip这个里面的源码&#xff0c;然后把源码加入到自己创建的qt项目pro中&#xff0c;导入方式…...

三、网络服务协议

目录 一、FTP&#xff1a;文件传输协议 二、Telnet&#xff1a;远程登录协议 三、AAA认证 四、DHCP 五、DNS 六、PPP协议 七、ISIS协议 一、FTP&#xff1a;文件传输协议 C/S架构&#xff0c;现多用于企业内部的资料共享和网络设备的文件传输&#xff0c;企业内部搭建一…...

C++初学者指南第一步---1. C++开发环境设置

C初学者指南第一步—1. C开发环境设置 目录 C初学者指南第一步---1. C开发环境设置1.1 工具1.1.1 代码编辑器和IDE1.1.2 Windows1.1.3 命令行界面 1.2 编译器1.2.1 gcc/g (支持Linux/Windows/MacOSX)1.2.2 clang/clang (支持Linux/Windows/MacOS)1.2.3 Microsoft Visual Studio…...

二维数组与指针【C语言】

二维数组与指针 一维数组一维数组与指针二维数组二维数组与指针总结补充判断以下方式是否正确打印二维数组一维数组 int arr[] = {11, 22, 33, 44};arr:首地址(第一个元素的地址) 一维数组与指针 int arr[] = {11, 22, 33, 44};因为,arr表示的是首地址,等价于 int* p =…...

解决linux下安装apex库报错:ModuleNotFoundError: No module named ‘packaging‘

使用如下命令安装apex&#xff1a; git clone https://github.com/NVIDIA/apex cd apex pip install -v --disable-pip-version-check --no-cache-dir --global-option"--cpp_ext" --global-option"--cuda_ext" ./ 报错&#xff1a; Running command py…...

React基础教程(07):条件渲染

1 条件渲染 使用条件渲染&#xff0c;结合TodoList案例&#xff0c;进行完善&#xff0c;实现以下功能&#xff1a; 当列表中的数据为空的时候&#xff0c;现实提示信息暂无待办事项当列表中存在数据的时候&#xff0c;提示信息消失 这里介绍三种实现方式。 注意这里的Empty是…...

回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测

回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测 目录 回归预测 | Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限学习机多变量回归预测效果一览基本介绍程序设计参考资料 效果一览 基本介绍 1.Matlab实现NGO-HKELM北方苍鹰算法优化混合核极限…...

操作系统——信号

将信号分为以上四个阶段 1.信号注册&#xff1a;是针对信号处理方式的规定&#xff0c;进程收到信号时有三种处理方式&#xff1a;默认动作&#xff0c;忽略&#xff0c;自定义动作。如果不是自定义动作&#xff0c;这一步可以忽略。这个步骤要使用到signal/sigaction接口 2.…...

力扣1482.制作m束花所需的最少时间

力扣1482.制作m束花所需的最少时间 二分答案 check的时候 用一个bool数组判断是否开花找连续的k朵花 const int N 1e510;int st[N];class Solution {public:int minDays(vector<int>& bloomDay, int m, int k) {int n bloomDay.size();if(n < (long long)m*…...

解决 Linux 和 Java 1.8 中上传中文名称图片报错问题

在 Linux 系统和 Java 1.8 中&#xff0c;当尝试上传含有中文名称的图片时&#xff0c;可能会遇到以下错误提示&#xff1a; Caused by: java.nio.file.InvalidPathException: Malformed input or input contains unmappable characters: /home/uploadPath/2024/06/12/扣子蝴蝶…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

Yolov8 目标检测蒸馏学习记录

yolov8系列模型蒸馏基本流程&#xff0c;代码下载&#xff1a;这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中&#xff0c;**知识蒸馏&#xff08;Knowledge Distillation&#xff09;**被广泛应用&#xff0c;作为提升模型…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...