【SCAU数据挖掘】数据挖掘期末总复习题库选择题及解析
1.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C )
A.频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘
解析:数据预处理是数据分析和数据挖掘的重要步骤之一,包括数据清洗、集成、变换、规约(如维度规约、数值规约)等。这些步骤的目的是为了改善数据质量,使其更适合于后续的分析和挖掘任务。
频繁模式挖掘:这是数据挖掘中的一种技术,用于发现数据集中频繁出现的模式或项集。
分类和预测:这是数据挖掘的目标之一,分类是对数据进行分类,预测是预测未来的值或趋势。
数据流挖掘:这是处理连续到达的数据流(如实时数据)的挖掘技术。
2.简单地将数据对象集划分成不重叠的子集,使得每个数据对象恰在一个子集中,这种聚类类型称作( B )。
A.层次聚类 B.划分聚类 C.非互斥聚类 D.模糊聚类
解析:划分聚类是将数据集划分为K个(K是给定的)不重叠的子集(或称为簇),每个数据点都属于且仅属于一个簇。
层次聚类:这是一种聚类方法,创建了一个层次化的聚类树,其中每个簇都是树中的一个节点。
非互斥聚类:这不是一个标准的聚类类型术语。在聚类中,数据点通常被分配到唯一的簇中,因此它们是“互斥”的。但有一些聚类方法(如模糊聚类)允许数据点以某种程度属于多个簇,但这与“非互斥”的定义不完全一致。
模糊聚类:这是一种聚类方法,其中每个数据点可以以不同的隶属度属于多个簇。
3.下表是一个购物篮,假设支持度阈值为40%,其中( AD )是频繁闭项集。
TID 项
1 abc
2 abcd
3 bce
4 acde
5 de
A.abc B. ad C.cd D.de
解析:在关联规则挖掘中,频繁项集是指满足最小支持度阈值的项集。支持度是指项集在所有事务中出现的频率。给定支持度阈值为40%,即至少需要在40%的事务中出现才被认为是频繁的。
计算每个项集的支持度,找出频繁项集(即支持度大于或等于40%的项集):
最后,频繁闭项集是那些没有超集的频繁项集。我们可以看到,de 没有更大的项集(如ade或bde)是频繁的,因此de是频繁闭项集。
频繁闭项集是一个频繁项集,且它的所有超集都不是频繁的。
- abc 的超集 abcd 和 abce 都不是频繁的(因为支持度低于40%),所以 abc 是频繁闭项集。
- ad 的超集 ade 是频繁的(支持度为 80%),所以 ad 不是频繁闭项集。
- cd 的超集 cde 是频繁的(支持度为 60%),所以 cd 不是频繁闭项集。
- de 本身就是一个项集,没有超集,且是频繁的,但没有任何超集。
4.Nave Bayes是一种特殊的贝叶斯分类器,特征变量是X,类别标签是C,它的一个假定是:(C )。
A.各类别的先验概率P(C)是相等的
B.以0为均值,sqr(2)/2为标准差的正态分布
C.特征变量X的各个维度是类别条件独立随机变量
D.P(X|C)是高斯分布
解析:Nave Bayes分类器基于一个关键假设:特征变量(给定类别下)是类别条件独立的随机变量。这意味着,在给定类别的条件下,一个特征的出现概率不会受到其他特征的影响。
Nave Bayes(朴素贝叶斯)分类器是一种特殊的贝叶斯分类器,其中特征变量是X,类别标签是C。
A选项朴素贝叶斯并不要求各类别的先验概率相等。
B选项以0为均值,sqr(2)/2为标准差的正态分布。描述了一个特定的正态分布,但并不是朴素贝叶斯分类器的基本假定。朴素贝叶斯分类器可以处理各种分布的数据,而不仅限于正态分布。
C. 特征变量X的各个维度是类别条件独立随机变量,这是朴素贝叶斯分类器的核心假定。它假设在给定类别C的条件下,特征变量X的各个维度(即各个特征)是相互独立的。这意味着一个特征的出现概率不会受到其他特征的影响,从而简化了模型的计算。
D选项,朴素贝叶斯可以处理不同类型的特征分布,包括但不限于高斯分布。
5.某超市研究销售记录数据后发现,买啤酒的人很大概率也会购买尿布,这属于数据挖掘的哪类问题?( A )
A.关联规则发现 B.聚类 C.分类 D.自然语言处理
解析:买啤酒的人很大概率也会购买尿布是一个典型的关联规则发现问题。关联规则挖掘用于发现数据集中项之间的有趣关系,如“如果购买了A,那么很可能也会购买B”。在这个例子中,A是啤酒,B是尿布。
6.()是一个观测值,它与其他观测值的差别很大,以至于怀疑它是由不同的机制产生的。
A.边界点 B.离群点 C.核心点 D.质心
解析:离群点(Outlier)是一个观测值,它与其他观测值存在显著的差异,以至于怀疑它可能是由不同的机制产生的。
边界点:边界点指的是位于不同聚类边缘或边界上的数据,不属于任何特定的聚类中心,而是位于两个或多个聚类之间的区域,它们只是位于聚类的边缘。
核心点:核心点指的是聚类内部的点,即距离聚类中心较近的点,往往代表了聚类的主要特征和结构,核心点不受到离群点的影响,因为它们位于聚类的中心区域。
质心:质心通常用于描述一个集合(如聚类)的中心或重心。在聚类分析中,质心可以是一个点(如平均值点),用于表示聚类中所有点的中心位置。质心在迭代聚类算法(如K-means算法)中起着重要作用,因为它可以帮助确定新的聚类中心位置。然而,质心本身并不是一个观测值,而是由观测值计算得出的一个统计量。
7.影响聚类算法效果的主要原因有(ABC)。
A.特征选取 B.模式相似性测度
C.分类准则 D.已知类别的样本质量
解析:聚类的目标是使同一类对象的相似度尽可能地大;不同类对象之间的相似度尽可能地小。
特征选取的差异会影响聚类效果(A正确)。
聚类的目标是使同一类对象的相似度尽可能地大,因此不同的相似度测度方法对聚类结果有着重要影响(B正确)。
由于聚类算法是无监督方法,不存在带类别标签的样本,因此,D选项不是聚类算法的输入数据。
8.在分类问题中,我们经常会遇到正负样本数据量不等的情况,比如正样本有10万条数据,负样本只有1万条数据,以下最合适的处理方法是( ACD)。
A.将负样本重复10次,生成10万样本量,打乱顺序参与分类
B.直接进行分类,可以最大限度地利用数据
C.从10万正样本中随机抽取1万参与分类
D.将负样本每个权重设置为10,正样本权重为1,参与训练过程
解析:在正负样本数据量不等的情况下,通常采取的措施是调整样本的权重,而不是简单地重复样本或随机抽取样本。D选项中将负样本的权重设置为10,正样本的权重设置为1,是一种常用的做法,以平衡正负样本对分类器训练的影响。
A.重采样,改变数据分布消除不平衡
C欠采样, 提高少数类的分类性能,可能丢失多数类的重要信息
9.在
相关文章:
【SCAU数据挖掘】数据挖掘期末总复习题库选择题及解析
1.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?( C ) A.频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 解析:数据预处理是数据分析和数据挖掘的重要步骤之一,包括数据清洗、集成、变换、规约(如维度规约、数值规约)等。这…...

顶顶通呼叫中心中间件-限制最大通话时间(mod_cti基于FreeSWITCH)
顶顶通呼叫中心中间件-限制最大通话时间(mod_cti基于FreeSWITCH) 一、最大通话时间 1、配置拨号方案 1、点击拨号方案 ->2、在框中输入通话最大时长->3、点击添加->4、根据图中配置->5、勾选continue。修改拨号方案需要等待一分钟即可生效 action"sched…...
深度学习:使用argparse 模块
在深度学习中,结合 Bash 脚本和 argparse 模块,可以实现高效的任务自动化和参数管理。Bash 脚本可以用来调度任务和管理环境,而 argparse 模块可以用来解析命令行参数,控制深度学习模型的训练和评估过程。 1.argparse 模块 argp…...
unity text根据文本内容自动设置高度
我们经常会遇到需要根据文字数量动态修改文本框高度的需求,我们可以使用文本的行数*每行的高度来计算文本框的高度,伪代码如下: int oneLineHight 50;// 每行的像素高度 private void ResetTextHight(string str) {//设置文字内容ShowText.…...
ARM 汇编 C语言 for循环
在使用 Keil 编译基于 STM32F103 的 C 语言程序时,生成的汇编代码会有一些不同。STM32F103 是基于 ARM Cortex-M3 内核的微控制器,因为汇编语言是 ARM 汇编,而不是 x86 汇编。 示例 C 代码 假设我们有如下的简单 C 语言 for 循环代码&#x…...

java:【@ComponentScan】和【@SpringBootApplication】扫包范围的冲突
# 代码结构如下: 注意【com.chz.myBean.branch】和【com.chz.myBean.main】这两个包是没有生重叠的。 主程序【MyBeanTest1、MyBeanTest2、MyBeanTest3】这两个类是在包【com.chz.myBean.main】下 # 示例代码 【pom.xml】 <dependency><groupId>org.…...

本学期嵌入式期末考试的综合项目,我是这么出题的
时间过得真快,临近期末,又到了老师出卷的时候。作为《嵌入式开发及应用》这门课的主讲教师,今年给学生出的题目有一点点难度,最后的综合项目要求如下所示,各位学生朋友和教师同行可以评论一下难度如何,单片…...

CSS概述
CSS是一种样式表语言,用于为HTML文档控制外观,定义布局。例如, CSS涉及字体、颜色、边距、高度、宽度、背景图像、高级定位等方面 。 ● 可将页面的内容与表现形式分离,页面内容存放在HTML文档中,而用 于定义表现形式…...

Tensorflow-GPU工具包了解和详细安装方法
目录 基础知识信息了解 显卡算力 CUDA兼容 Tensorflow gpu安装 CUDA/cuDNN匹配和下载 查看Conda driver的版本 下载CUDA工具包 查看对应cuDNN版本 下载cuDNN加速库 CUDA/cuDNN安装 CUDA安装方法 cuDNN加速库安装 配置CUDA/cuDNN环境变量 配置环境变量 核验是否安…...

【python】OpenCV GUI——Trackbar(14.2)
学习来自 OpenCV基础(12)OpenCV GUI中的鼠标和滑动条 文章目录 GUI 滑条介绍cv2.createTrackbar 介绍牛刀小试 GUI 滑条介绍 GUI滑动条是一种直观且快速的调节控件,主要用于改变一个数值或相对值。以下是关于GUI滑动条的详细介绍:…...

Qt自定义日志输出
Qt自定义日志输出 简略版: #include <QApplication> #include <QDebug> #include <QDateTime> #include <QFileInfo> // 将日志类型转换为字符串 QString typeToString(QtMsgType type) {switch (type) {case QtDebugMsg: return "D…...

[C++] vector list 等容器的迭代器失效问题
标题:[C] 容器的迭代器失效问题 水墨不写bug 正文开始: 什么是迭代器? 迭代器是STL提供的六大组件之一,它允许我们访问容器(如vector、list、set等)中的元素,同时提供一个遍历容器的方法。然而…...

Java——变量作用域和生命周期
一、作用域 1、作用域简介 在Java中,作用域(Scope)指的是变量、方法和类在代码中的可见性和生命周期。理解作用域有助于编写更清晰、更高效的代码。 2、作用域 块作用域(Block Scope): 块作用域是指在…...

WPF界面设计
1、使用C#-WPF实现抽屉效果-炫酷漂亮的侧边栏导航菜单-SplitViewMD主题重绘原生控件的美观效果-提供源码Demo下载 码源地址:https://download.csdn.net/download/Prince999999/89424685 2、使用C#-WPF实现抽屉效果-菜单导航功能实现,常规的管理系统应该…...

【C#】使用JavaScriptSerializer序列化对象
在C#开发语言编程中,通常使用系统内置的JavaScriptSerializer类来序列化对象,以便将其转换为JSON格式的文本存储与后台服务通信, 在这里将为大家详细介绍一下这个过程。 文章目录 反序列化序列化忽略属性 假设处理的数据中有一个对象类, 如下 public cl…...

HTML静态网页成品作业(HTML+CSS)—— 明星吴磊介绍网页(5个页面)
🎉不定期分享源码,关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 🏷️本套采用HTMLCSS,未使用Javacsript代码,共有5个页面。 二、作品演示 三、代…...

EasyRecovery2024数据恢复神器#电脑必备良品
EasyRecovery数据恢复软件,让你的数据重见天日! 大家好!今天我要给大家种草一个非常实用的软件——EasyRecovery数据恢复软件!你是不是也曾经遇到过不小心删除了重要的文件,或者电脑突然崩溃导致数据丢失的尴尬情况呢&…...
前端HTML相关知识
1.什么是HTML HTML 指的是超文本标记语言 ( HyperText Markup Language )。 超文本:是指页面内可以包含图片、链接、声音,视频等内容 标记:标签(通过标记符号来告诉浏览器网页内容该如何显示) 浏览器根据不同的HTML标签,解析成我们看到的网页 2.HTML的特点 HTML不…...

集合面试题
目录 ①HashMap的理解?以及为什么要把链表转换为红黑树?②HashMap的put?③HashMap的扩容?④加载因子为什么是0.75?⑤modcount的作用?⑥HashMap与HashTable的区别?⑥HashMap中1.7和1.8的区别&am…...

集成学习概述
概述 集成学习(Ensemble learning)就是将多个机器学习模型组合起来,共同工作以达到优化算法的目的。具体来讲,集成学习可以通过多个学习器相结合,来获得比单一学习器更优越的泛化性能。集成学习的一般步骤为:1.生产一组“个体学习…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的
修改bug思路: 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑:async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...

淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
DAY 26 函数专题1
函数定义与参数知识点回顾:1. 函数的定义2. 变量作用域:局部变量和全局变量3. 函数的参数类型:位置参数、默认参数、不定参数4. 传递参数的手段:关键词参数5 题目1:计算圆的面积 任务: 编写一…...
《Offer来了:Java面试核心知识点精讲》大纲
文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...
Python学习(8) ----- Python的类与对象
Python 中的类(Class)与对象(Object)是面向对象编程(OOP)的核心。我们可以通过“类是模板,对象是实例”来理解它们的关系。 🧱 一句话理解: 类就像“图纸”,对…...

HTTPS证书一年多少钱?
HTTPS证书作为保障网站数据传输安全的重要工具,成为众多网站运营者的必备选择。然而,面对市场上种类繁多的HTTPS证书,其一年费用究竟是多少,又受哪些因素影响呢? 首先,HTTPS证书通常在PinTrust这样的专业平…...
C++ 变量和基本类型
1、变量的声明和定义 1.1、变量声明规定了变量的类型和名字。定义初次之外,还申请存储空间,也可能会为变量赋一个初始值。 如果想声明一个变量而非定义它,就在变量名前添加关键字extern,而且不要显式地初始化变量: e…...

低代码采购系统搭建:鲸采云+能源行业订单管理自动化案例
在能源行业数字化转型浪潮下,某大型能源集团通过鲸采云低代码平台,仅用3周时间就完成了采购订单管理系统的定制化搭建。本文将揭秘这一成功案例的实施路径与关键成效。 项目背景与挑战 该企业面临: 供应商分散:200供应商使用不同…...