当前位置: 首页 > news >正文

GPU短缺和模型效率的推动

1. 引言

随着全球GPU短缺和云计算成本的不断上升,开发更高效的AI模型成为了当前的焦点。技术如低秩适应(LoRA)和量化(Quantization)在优化性能的同时,减少了资源需求。这些技术不仅在当前的AI开发中至关重要,也将深远影响未来AI的发展。本文将探讨这些技术的工作原理及其对AI开发的广泛影响。

2. GPU短缺和云计算成本上升的背景

近年来,由于AI研究和应用的激增,GPU的需求大幅增加。然而,供应链的限制和生产能力的不足导致了全球范围内的GPU短缺。这种短缺现象直接推高了GPU的价格,也使得依赖GPU的大规模AI训练和推理变得昂贵。同时,随着云计算服务的广泛使用,云计算成本也在不断上升,进一步增加了AI开发的经济压力【9†source】。

3. 低秩适应(LoRA)

低秩适应(LoRA)是一种通过减少模型参数更新数量来优化AI模型的方法。其基本原理是:

  • 冻结预训练模型权重:在模型的每个Transformer块中,冻结预训练的模型权重。
  • 引入可训练层:在每个Transformer块中注入两个较小的矩阵,表示模型权重的变化矩阵。这些小矩阵代表了低秩(Low-Rank)近似,从而大大减少了需要更新的参数数量。
  • 加快微调速度:由于只需要更新少量参数,微调过程变得更加快速且高效,同时降低了内存需求。

通过LoRA,AI开发者可以在不增加大量资源的情况下,显著提升模型的性能和效率【9†source】。

4. 量化(Quantization)

量化技术通过降低模型数据表示的精度来减少内存使用和提高推理速度。其工作原理如下:

  • 降低数据精度:将模型数据从高精度(如16位浮点数)转换为低精度(如8位整数)。
  • 减少内存使用:低精度表示显著减少了模型的内存需求,使得模型在资源有限的环境中运行更加高效。
  • 加速推理:由于低精度计算需要的计算资源较少,推理速度得到显著提升。

量化技术特别适用于边缘设备和移动设备,使得复杂的AI模型能够在这些设备上高效运行【9†source】。

5. 对未来AI开发的影响

这些技术的应用不仅解决了当前GPU短缺和云计算成本高昂的问题,还对未来AI开发产生了深远影响:

  • 降低开发成本:通过LoRA和量化技术,开发者可以在更少的资源下训练和运行高效的AI模型,显著降低开发和运行成本。
  • 普及AI技术:这些技术使得更多的中小型企业和个人开发者能够负担得起AI开发,从而加速AI技术的普及和应用。
  • 推动创新:随着AI模型变得更加高效,开发者能够更专注于创新应用,推动AI技术在各个领域的深入发展。
6. 结论

随着GPU短缺和云计算成本的上升,低秩适应和量化技术在优化AI模型性能方面发挥了关键作用。这些技术不仅解决了当前的资源问题,还为未来的AI开发提供了新的可能性和发展方向。通过这些技术的应用,AI开发将变得更加高效和普及,推动整个行业的不断创新和进步。

参考资料
  • MIT Technology Review
  • IBM Blog
  • 9to5Mac

相关文章:

GPU短缺和模型效率的推动

1. 引言 随着全球GPU短缺和云计算成本的不断上升,开发更高效的AI模型成为了当前的焦点。技术如低秩适应(LoRA)和量化(Quantization)在优化性能的同时,减少了资源需求。这些技术不仅在当前的AI开发中至关重…...

linux在文件夹中查找文件内容

linux在文件夹中查找文件内容 在Linux中,可以通过以下多个途径,在文件夹中查找文件内容: 1、使用grep命令: grep -r "要查找的内容" /path/to/folder-r参数表示递归地在文件夹及其子文件夹中搜索。/path/to/folder是要搜索的文件夹路径。2、使用ack命令 ack …...

算法:11. 盛最多水的容器

11. 盛最多水的容器 给定一个长度为 n 的整数数组 height 。有 n 条垂线,第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 说明:你…...

Hazelcast 分布式缓存 在Seatunnel中的使用

1、背景 最近在调研seatunnel的时候,发现新版的seatunnel提供了一个web服务,可以用于图形化的创建数据同步任务,然后管理任务。这里面有个日志模块,可以查看任务的执行状态。其中有个取读数据条数和同步数据条数。很好奇这个数据…...

分数限制下,选好专业还是选好学校?

目录 分数限制下,选好专业还是选好学校? 方向一:专业解析 1. 专业选择的重要性 2. 不同专业的优势与挑战 3. 个人专业选择经验分享 4. 实际场景下的“专业VS学校”选择方案 方向二:名校效应分析 1. 名校声誉与品牌效应 2…...

软件改为开机自启动

1.按键 win R,输入“shell:startup”命令, 然后就可以打开启动目录了,如下: 2.然后,把要开机启动的程序的图标拖进去即可。 参考:开机启动项如何设置...

集群down机的应急和恢复测试(非重做备机)

1. 集群的两台服务器的状态 实例 正常情况主备 ip 端口 node1 主机 192.168.6.6 9088 node2 备机 192.168.6.7 9088 2. 测试的步骤 down掉node1观察node2的状态在node2未自动切换的时候手动将node2调整为单机状态,模拟紧急使用模拟不紧急时&#xff0…...

【数据库系统概论复习】关系数据库与关系代数笔记

文章目录 基本概念数据库基本概念关系数据结构完整性约束 关系代数关系代数练习课堂练习 语法树 基本概念 数据库基本概念 DB 数据库, 为了存用户的各种数据,我们要建很多关系(二维表),所以把相关的关系(二…...

赛氪网受邀参加上海闵行区翻译协会年会,共探科技翻译创新之路

在科技飞速发展的时代背景下,翻译行业正面临着前所未有的机遇与挑战。作为连接高校、企业与社会的桥梁,赛氪网在推动翻译创新、促进学术交流方面展现出了独特的魅力。2024年6月9日,在华东师范大学外语学院举办的第十三届上海市闵行区翻译协会…...

项目管理进阶之EVM(挣值管理)

前言 项目管理进阶系列,终于有时间更新啦!!!欢迎持续关注哦~ 上一节博主重点讲了一个环:PDCA,无论各行各业,上到航空航天、下到种地种菜,都离不开对质量的监督和改进。这个环既是一…...

PLSQL、Oracle以及客户端远程连接服务器笔记(仅供参考)

1.PLSQL参考链接: 全网最全最细的PLSQL下载、安装、配置、使用指南、问题解答,相关问题已汇总-CSDN博客文章浏览阅读2.9w次,点赞98次,收藏447次。双击之后,这里选择安装目录,你安装目录选的哪里&#xff0…...

Win快速删除node_modules

在Windows系统上删除 node_modules 文件夹通常是一个缓慢且耗时的过程。这主要是由于几个关键因素导致的: 主要原因 文件数量多且嵌套深: node_modules 文件夹通常包含成千上万的子文件夹和文件。由于其结构复杂,文件和文件夹往往嵌套得非常…...

【机器学习】基于顺序到顺序Transformer机器翻译

引言 1.1 序列到序列模型详解 序列到序列(Seq2Seq)模型是深度学习中处理序列数据转换问题的关键架构。在自然语言处理(NLP)任务中,如机器翻译、文本摘要和聊天机器人等,Seq2Seq模型能够高效地将输入序列转换为期望的输出序列。 模型架构: 编…...

TEA 加密的 Java 实现

import java.nio.ByteBuffer; import java.nio.ByteOrder;public class TeaUtils {private static final int DELTA 0x9E3779B9;private static final int ROUND 32;private static final String KEY "password";/*** 加密字符串,使用 TEA 加密算法*/p…...

鸿蒙开发电话服务:【@ohos.telephony.data (蜂窝数据)】

蜂窝数据 说明: 本模块首批接口从API version 7开始支持。后续版本的新增接口,采用上角标单独标记接口的起始版本。 导入模块 import data from ohos.telephony.data;data.getDefaultCellularDataSlotId getDefaultCellularDataSlotId(callback: Async…...

Maven认识与学习

1. Maven介绍 1.2 初识Maven 1.2.1 什么是Maven Maven是Apache旗下的一个开源项目,是一款用于管理和构建java项目的工具。 官网:Maven – Welcome to Apache Maven Apache 软件基金会,成立于1999年7月,是目前世界上最大的最受…...

“深入探讨Redis主从复制:原理、配置与优化“

目录 # 概念 1. 配置主从同步步骤 1.1 创建文件夹 1.2 复制配置文件 1.3 配置文件关闭 1.4 查看端口号,发现端口号存在 1.5 连接三个端口号 1.6 查看主机运行情况 1.7 让服务器变成(主机)或(从机) 1.8 实现效…...

HTML初体验

可参考jd.com官网&#xff0c;ctrlu查看当前页面源代码 找到你的项目&#xff0c;在项目中创建html类型的网页文件 标准的HTML正确书写格式 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title&…...

全局特征提取netvlad的理解

...

【设计模式-12】代理模式的代码实现及使用场景

&emsp&#xff1b;代理模式是一种应用很广发的结构性设计模式&#xff0c;它的设计初衷就是通过引入新的代理对象&#xff0c;在客户端和目标对象之间起到中介的作用&#xff0c;从而实现控制客户端对目标对象的访问&#xff0c;比如增强或者阉割某些能力。 1. 概述 代理模…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

&#x1f50d; 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术&#xff0c;可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势&#xff0c;还能有效评价重大生态工程…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...