Adam优化算法
Adam优化算法
Adam(Adaptive Moment Estimation)是一种用于训练深度学习模型的优化算法,由Diederik P. Kingma和Jimmy Ba在2014年提出。Adam结合了动量和自适应学习率的方法,具有高效、稳定和适应性强的特点,被广泛应用于各种深度学习任务中。
Adam优化算法的基本思想
Adam的核心思想是通过计算梯度的一阶和二阶动量来调整每个参数的学习率。具体来说,它结合了动量优化算法(Momentum)和RMSProp优化算法的优点:
-
动量优化
- 通过对梯度进行加权平均,减少梯度更新的方差,加速收敛。
-
自适应学习率
- 每个参数都有一个自适应的学习率,可以根据梯度的变化自动调整,处理稀疏梯度和动态变化的目标函数更有效。
Adam算法的工作流程
-
初始化
- 设置初始参数值,并定义一些超参数,如学习率、动量系数等。
-
梯度计算
- 在每一步训练中,计算损失函数相对于每个参数的梯度。
-
一阶动量和二阶动量的更新
- 通过加权平均更新一阶动量(类似于梯度的平均)和二阶动量(类似于梯度平方的平均)。
-
偏差修正
- 由于初始时动量值为零,通过偏差修正来调整动量估计,使其更加准确。
-
参数更新
- 使用更新的动量来调整每个参数的值。
Adam的优点
-
自适应学习率
- 不同参数有不同的自适应学习率,自动调整,减少了手动调参的工作。
-
处理稀疏梯度
- 能够很好地处理梯度稀疏的问题,在自然语言处理等任务中表现优异。
-
快速收敛
- 通常比随机梯度下降(SGD)和其他优化算法收敛更快,适合大规模数据和高维参数空间。
-
稳定性
- 在训练过程中更稳定,震荡和抖动较少。
Adam的缺点和改进
-
过拟合风险
- 由于过于灵活和快速调整,Adam有时可能会导致模型过拟合。
-
理论收敛性问题
- 在某些情况下,Adam的理论收敛性并不完全理想。
改进版本
-
AMSGrad
- 通过修改Adam的动量更新方式,改进其理论收敛性。
-
AdaBound
- 结合Adam和SGD,通过设定学习率的上下界,缓解过拟合问题。
-
AdamW
- 在参数更新时加入权重衰减,改进正则化效果,提升模型泛化能力。
应用场景
-
计算机视觉
- 在图像分类、目标检测等任务中广泛应用。
-
自然语言处理
- 适用于处理文本分类、机器翻译、情感分析等任务。
-
生成对抗网络(GANs)
- 由于其稳定性和自适应性,Adam常用于训练生成对抗网络。
总结
Adam优化算法通过结合动量和自适应学习率的优点,提供了一种高效、稳定、适应性强的参数优化方法。尽管存在一些缺点和挑战,但通过各种改进版本,Adam在深度学习领域仍然是非常受欢迎的选择。其在各种应用场景中的成功应用,证明了其在处理复杂优化问题时的有效性。
相关文章:
Adam优化算法
Adam优化算法 Adam(Adaptive Moment Estimation)是一种用于训练深度学习模型的优化算法,由Diederik P. Kingma和Jimmy Ba在2014年提出。Adam结合了动量和自适应学习率的方法,具有高效、稳定和适应性强的特点,被广泛应…...

MYSQL 三、mysql基础知识 7(MySQL8其它新特性)
一、mysql8新特性概述 MySQL从5.7版本直接跳跃发布了8.0版本 ,可见这是一个令人兴奋的里程碑版本。MySQL 8版本在功能上 做了显著的改进与增强,开发者对MySQL的源代码进行了重构,最突出的一点是多MySQL Optimizer优化器进行了改进。不仅在速度…...
git error: does not have a commit checked out fatal: adding files failed
git add net error: net/ does not have a commit checked out fatal: adding files failed这个错误是因为尝试将一个尚未被提交的文件夹添加到Git中。解决这个问题的方法是先将文件夹中的文件提交到Git仓库中,然后再将文件夹添加到Git中。 首先,需要进…...
Java Websocket分片发送
一、分片发送和接收(复杂) 如果数据量太大,需要分多次发送, 需要考虑数据划分和重组的问题。 二、具体思路 每次发送和接收用一个布尔值变量指定是否为最后一个分片。 三、具体使用 (一)字符串分片发送: sendText(文本, 布尔值)…...

vivado NODE、PACKAGE_PIN
节点是Xilinx部件上用于路由连接或网络的设备对象。它是一个 WIRE集合,跨越多个瓦片,物理和电气 连接在一起。节点可以连接到单个SITE_, 而是简单地将NETs携带进、携带出或携带穿过站点。节点可以连接到 任何数量的PIP,并且也可以…...

JavaEE、SSM基础框架、JavaWeb、MVC(认识)
目录 一、引言 (0)简要介绍 (1)主要涉及的学习内容 (2)学习的必要性 (3)适用学习的人群(最好有这个部分的知识基础) (4)这个基础…...

【漏洞复现】飞企互联-FE企业运营管理平台 treeXml.jsp SQL注入漏洞
0x01 产品简介 飞企互联-FE企业运营管理平台是一个基于云计算、智能化、大数据、物联网、移动互联网等技术支撑的云工作台。这个平台可以连接人、链接端、联通内外,支持企业B2B、C2B与020等核心需求,为不同行业客户的互联网转型提供支持。其特色在于提供…...
Android基础-运行时权限
一、引言 随着智能手机和移动互联网的普及,Android操作系统作为其中的佼佼者,其安全性问题日益受到关注。为了保障用户数据的安全和隐私,Android系统引入了权限机制来管理和控制应用程序对系统资源和用户数据的访问。特别是在Android 6.0&am…...

postman断言及变量及参数化
1:postman断言 断言:判断接口是否执行成功的过程 针对接口请求完成之后,针对他的响应状态码及响应信息进行判断,代码如下: //判断响应信息状态码是否正确 pm.test("Status code is 200", function () { pm.response.…...
安装和使用TrinityCore NPCBot
安装TrinityCore NPCBot 官网:GitHub - trickerer/Trinity-Bots: NPCBots for TrinityCore and AzerothCore 3.3.5 基本安装方法 Follow TrinityCore Installation Guide (https://TrinityCore.info/) to install the server firstDownload NPCBots.patch and put …...

Hvv--知攻善防应急响应靶机--Linux2
HW–应急响应靶机–Linux2 所有靶机均来自 知攻善防实验室 靶机整理: 夸克网盘:https://pan.quark.cn/s/4b6dffd0c51a#/list/share百度云盘:https://pan.baidu.com/s/1NnrS5asrS1Pw6LUbexewuA?pwdtxmy 官方WP:https://mp.weixin.…...

replaceAll is not a function 详解
先说说原因: 在chrome 浏览器中使用 replaceAll 报这个错误,是因为chrome 版本过低, 在chrome 85 以上版本才支持 用法 replaceAll(pattern, replacement)const paragraph "I think Ruths dog is cuter than your dog!"; console…...

如何设置天锐绿盾的数据防泄密系统
设置天锐绿盾的数据防泄密系统,可以按照以下步骤进行: 一、系统安装与初始化 在线或离线安装天锐绿盾数据防泄密系统,确保以管理员身份运行安装包,并按照安装向导的提示完成安装。输入序列号进行注册,激活系统。 二…...

003 gitee怎样将默认的私有仓库变成公开仓库
先点击“管理”, 再点击“基本信息” 在“是否开源”里, 选择:开源...
Spring框架中的IOC(控制反转)详解
Spring框架中的IOC(控制反转)详解 一、引言 在软件开发中,设计模式与框架的应用极大地提高了开发效率和软件质量。其中,Spring框架因其强大的功能和灵活的扩展性,成为了Java企业级应用开发的首选。而Spring框架中的核…...
Score Matching(得分匹配)
Score Matching(得分匹配)是一种统计学习方法,用于估计概率密度函数的梯度(即得分函数),而无需知道密度函数的归一化常数。这种方法由Hyvrinen在2005年提出,主要用于无监督学习,特别…...

五大维度大比拼:ChatGPT比较文心一言,你的AI助手选择指南
文章目录 一、评估AI助手的五个关键维度二、ChatGPT和文心一言的比较 评估AI助手的五个关键维度,以及ChatGPT和文心一言的比较如下: 一、评估AI助手的五个关键维度 界面友好性 : 评估标准:用户界面是否直观易用,是否…...

大学课设项目,Windows端基于UDP的网络聊天程序的服务端和客户端
文章目录 前言项目需求介绍一、服务端1.对Udp套接字进行一个封装2. UdpServer的编写3. Task.h4.protocol.h的编写5.线程池的编写6.main.cc 二、客户端1. Socket.h2.protocol.h3.UdpClient4.menu.h5.main.cpp 三、运行图 前言 本次项目可以作为之前内容的一个扩展,学…...

【5.x】ELK日志分析、集群部署
ELK日志分析 一、ELK概述 1、ELK简介 ELK平台是一套完整的日志集中处理解决方案,将ElasticSearch、Logstash和Kiabana三个开源工具配合使用,完成更强大的用户对日志的查询、排序、统计需求。 一个完整的集中式日志系统,需要包含以下几个主…...
揭秘创业加盟:豫腾助力,发掘商机,共赢未来
在我们生活的这个充满活力与机遇的世界里,商业活动如繁星点点,照亮着每个人的创业梦想。 在这个过程中,创业加盟作为一种独特且吸引人的模式,逐渐受到广大创业者的关注。 本文将深入解析创业加盟的精髓,以及如何在其…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
解决本地部署 SmolVLM2 大语言模型运行 flash-attn 报错
出现的问题 安装 flash-attn 会一直卡在 build 那一步或者运行报错 解决办法 是因为你安装的 flash-attn 版本没有对应上,所以报错,到 https://github.com/Dao-AILab/flash-attention/releases 下载对应版本,cu、torch、cp 的版本一定要对…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...

C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)
UniApp 集成腾讯云 IM 富媒体消息全攻略(地理位置/文件) 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型,核心实现方式: 标准消息类型:直接使用 SDK 内置类型(文件、图片等)自…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
TCP/IP 网络编程 | 服务端 客户端的封装
设计模式 文章目录 设计模式一、socket.h 接口(interface)二、socket.cpp 实现(implementation)三、server.cpp 使用封装(main 函数)四、client.cpp 使用封装(main 函数)五、退出方法…...