当前位置: 首页 > news >正文

多元多项式的特征列与零点的关系定理

下面这个定理来自《计算机代数》6.1三角列与特征列(王东明、夏壁灿著)

【定理】

C = [ C 1 , … , C r ] \mathbb{C =}\left\lbrack C_{1},\ldots,C_{r} \right\rbrack C=[C1,,Cr]为多项式组 P ⊂ K [ x ] \mathbb{P \subset}\mathcal{K\lbrack}\mathbf{x}\rbrack PK[x]的特征列,且命

I i = i n i ( C i ) P i = P ∪ { I i } i = 1 , … , r I_{i} = ini\left( C_{i} \right)\ \ \ \ \ \ \mathbb{P}_{i}\mathbb{= P \cup}\left\{ I_{i} \right\}\ \ \ \ \ i = 1,\ldots,r Ii=ini(Ci)      Pi=P{Ii}     i=1,,r

I = i n i ( C ) = { I 1 , … , I r } \mathbb{I =}ini\left( \mathbb{C} \right) = \left\{ I_{1},\ldots,I_{r} \right\} I=ini(C)={I1,,Ir}

Z e r o ( C \ I ) ⊂ Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(C\I)Zero(P)Zero(C)

Z e r o ( P ) = Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) = Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)=Zero(C\I)i=1rZero(Pi)

K \mathcal{K} K以及 K \mathcal{K} K的任意扩域中成立

【证明】

  1. Z e r o ( C \ I ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) Zero(C\I)Zero(P)

由于 C = [ C 1 , … , C r ] \mathbb{C =}\left\lbrack C_{1},\ldots,C_{r} \right\rbrack C=[C1,,Cr]为多项式组 P ⊂ K [ x ] \mathbb{P \subset}\mathcal{K\lbrack}\mathbf{x}\rbrack PK[x]的特征列,所以 p r e m ( P , C ) = { 0 } prem\left( \mathbb{P,C} \right) = \left\{ 0 \right\} prem(P,C)={0},也就是说对于任意 P ∈ P P \in \mathbb{P} PP,都有

I 1 q 1 … I r q r P = ∑ i = 1 r C i I_{1}^{q_{1}}\ldots I_{r}^{q_{r}}P = \sum_{i = 1}^{r}C_{i} I1q1IrqrP=i=1rCi

而对于任意的 x ∈ Z e r o ( C \ I ) x \in Zero\left( \mathbb{C\backslash I} \right) xZero(C\I),都有 x ∉ Z e r o ( I 1 q 1 … I r q r ) x \notin Zero\left( I_{1}^{q_{1}}\ldots I_{r}^{q_{r}} \right) x/Zero(I1q1Irqr) x ∈ Z e r o ( C i ) x \in Zero\left( C_{i} \right) xZero(Ci),那么 P = 0 P = 0 P=0,可得 x ∈ Z e r o ( P ) x \in Zero\left( \mathbb{P} \right) xZero(P),即 Z e r o ( C \ I ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) Zero(C\I)Zero(P)

  1. Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(P)Zero(C)

根据特征列的定义,有 C ⊂ ⟨ P ⟩ \mathbb{C \subset}\left\langle \mathbb{P} \right\rangle CP,也就是

C i = ∑ P ∈ P k P P C_{i} = \sum_{P \in \mathbb{P}}^{}{k_{P}P} Ci=PPkPP

所以,当多项式 P P P的值为 0 0 0时, C i C_{i} Ci必为 0 0 0,即 Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(P)Zero(C)

  1. Z e r o ( P ) ⊂ Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)Zero(C\I)i=1rZero(Pi)

x ∈ Z e r o ( P ) x \in Zero\left( \mathbb{P} \right) xZero(P),根据2,那么有 x ∈ Z e r o ( C ) x \in Zero\left( \mathbb{C} \right) xZero(C)

x ∈ Z e r o ( I ) x \in Zero\left( \mathbb{I} \right) xZero(I),则 x ∈ ⋃ i = 1 r Z e r o ( I i ) x \in \bigcup_{i = 1}^{r}{Zero\left( I_{i} \right)} xi=1rZero(Ii),又因为 x ∈ Z e r o ( P ) x \in Zero\left( \mathbb{P} \right) xZero(P),所以 x ∈ ⋃ i = 1 r Z e r o ( P i ) x \in \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} xi=1rZero(Pi)

x ∉ Z e r o ( I ) x \notin Zero\left( \mathbb{I} \right) x/Zero(I),结合 x ∈ Z e r o ( C ) x \in Zero\left( \mathbb{C} \right) xZero(C),可得 x ∈ Z e r o ( C \ I ) x \in Zero\left( \mathbb{C\backslash I} \right) xZero(C\I)

结合上述两种情况的讨论,可得 Z e r o ( P ) ⊂ Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)Zero(C\I)i=1rZero(Pi)

  1. Z e r o ( P ) ⊃ Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) \supset Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)Zero(C\I)i=1rZero(Pi)

根据1, Z e r o ( C \ I ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) Zero(C\I)Zero(P)

因为 Z e r o ( P i ) ⊂ Z e r o ( P ) Zero\left( \mathbb{P}_{i} \right) \subset Zero\left( \mathbb{P} \right) Zero(Pi)Zero(P),所以 ⋃ i = 1 r Z e r o ( P i ) ⊂ Z e r o ( P ) \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} \subset Zero\left( \mathbb{P} \right) i=1rZero(Pi)Zero(P)

综合可得 Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) ⊂ Z e r o ( P ) Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} \subset Zero\left( \mathbb{P} \right) Zero(C\I)i=1rZero(Pi)Zero(P)

综合1、2可得
Z e r o ( C \ I ) ⊂ Z e r o ( P ) ⊂ Z e r o ( C ) Zero\left( \mathbb{C\backslash I} \right) \subset Zero\left( \mathbb{P} \right) \subset Zero\left( \mathbb{C} \right) Zero(C\I)Zero(P)Zero(C)

综合3、4可得
Z e r o ( P ) = Z e r o ( C \ I ) ∪ ⋃ i = 1 r Z e r o ( P i ) Zero\left( \mathbb{P} \right) = Zero\left( \mathbb{C\backslash I} \right) \cup \bigcup_{i = 1}^{r}{Zero\left( \mathbb{P}_{i} \right)} Zero(P)=Zero(C\I)i=1rZero(Pi)

相关文章:

多元多项式的特征列与零点的关系定理

下面这个定理来自《计算机代数》6.1三角列与特征列(王东明、夏壁灿著) 【定理】 设 C [ C 1 , … , C r ] \mathbb{C }\left\lbrack C_{1},\ldots,C_{r} \right\rbrack C[C1​,…,Cr​]为多项式组 P ⊂ K [ x ] \mathbb{P \subset}\mathcal{K\lbrack}\…...

git - LFS 使用方法

安装Git LFS 访问 Git LFS官网 下载适用于您操作系统的版本。 Linux用户,解压缩下载的.tar.gz文件,并通过终端运行安装脚本。 tar -xvf git-lfs-linux-amd64-vX.Y.Z.tar.gz cd git-lfs-X.Y.Z sudo ./install.sh 初始化Git LFS # 全局启用 git lfs i…...

提高磁盘可靠性的技术:保障数据安全的四大方法

目录 1. 第一级容错技术 磁盘镜像(Mirroring) 工作原理 RAID 1 工作原理 优点 缺点 适用场景 示例 2. 第二级容错技术 概述 RAID 5 RAID 6 优点 缺点 适用场景 3. 基于集群系统的容错技术 概述 Hadoop HDFS Ceph 优点 缺点 适用场…...

CesiumJS【Basic】- #006 浏览器控制台查看位置角度

文章目录 浏览器控制台查看位置角度1 目标 浏览器控制台查看位置角度 1 目标 浏览器控制台查看位置角度...

Mac 终端报错 zsh: command not found: brew 解决方案

Homebrew安装 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"安装成功后,在终端输入下面命令 brew -v如果成功输出brew版本,则安装成功 关闭终端重新打开终端,报错zsh: comm…...

详解 HBase 的常用 API

一、环境准备 创建一个 Maven 工程并引入依赖 <dependency><groupId>org.apache.hbase</groupId><artifactId>hbase-server</artifactId><version>1.3.1</version> </dependency> <dependency><groupId>org.apach…...

JSR303校验

校验的需求 前端请求后端接口传输参数&#xff0c;需要校验参数。 在controller中需要校验参数的合法性&#xff0c;包括&#xff1a;必填项校验、数据格式校验等在service中需要校验业务规则&#xff0c;比如&#xff1a;课程已经审核过了&#xff0c;所以提交失败。 servi…...

04 远程访问及控制

1、SSH远程管理 SSH是一种安全通道协议&#xff0c;主要用来实现字符界面的远程登录、远程复制等功能。 SSH协议对通信双方的数据传输进行了加密处理&#xff08;包括用户登陆时输入得用户口令&#xff09;。 终端&#xff1a;接收用户的指令 TTY终端不能远程&#xff0c;它…...

[晕事]今天做了件晕事38 shell里的source 点号

今天碰到一个问题脚本里使用点号引入某个文件形式如下&#xff1a; . /tmp/abc但是脚本运行出现错误&#xff0c;一开始还以为是/tmp没有可执行权限&#xff08;https://mzhan017.blog.csdn.net/article/details/112178736#t16&#xff09;&#xff0c;导致abc运行不了。 后来…...

java如何分割字符串

java要实现对字符串的分割&#xff0c;需要用到split语句 语法格式是 str.split(分隔符) 其中 str是字符串 示例代码如下 public class Stringsplit {public static void main(String[] args) {String a"蒸羊羔&#xff0c;蒸熊掌&#xff0c;蒸鹿尾&#xff0c;烧花…...

胡说八道(24.6.12)——数字电子技术以及Modelsim

上回书说到数电中的最常用的表达式——逻辑表达式(由布尔代数组成)以及常用的两种图表——真值表(真值表表示的是所有的输入可能的线性组合以及输出)和卡诺图(卡诺图则是一种化简工具&#xff0c;排除冗余项&#xff0c;合并可合并项)。 今天&#xff0c;先来看看昨天说的基本逻…...

【Android面试八股文】AsyncTask中的任务是串行的还是并行的

文章目录 串行执行并行执行示例代码串行执行(默认)并行执行总结AsyncTask 的任务执行方式可以是串行的,也可以是并行的,这取决于使用的执行器 ( Executor)。 串行执行 默认情况下,AsyncTask 使用的是 SERIAL_EXECUTOR,即任务按顺序一个接一个地执行。这意味着下一个任务…...

无人机RTMP推流EasyDSS直播平台推流成功,不显示直播按钮是什么原因?

互联网视频云平台/视频点播直播/视频推拉流EasyDSS支持HTTP、HLS、RTMP等播出协议&#xff0c;并且兼容多终端&#xff0c;如Windows、Android、iOS、Mac等。为了便于用户集成与二次开发&#xff0c;我们也提供了API接口供用户调用和集成。在无人机场景上&#xff0c;可以通过E…...

经验分享,xps格式转成pdf格式

XPS 是一种电子文档格式、后台打印文件格式和页面描述语言。有时候微软默认打印机保存的是xps格式&#xff0c;我们如何转换为pdf格式呢&#xff0c;这里分享一个免费好用的网站&#xff0c;可以实现。 网站&#xff1a;https://xpstopdf.com/zh/ 截图&#xff1a;...

基于51单片机的音乐彩灯设计

基于51单片机的音乐彩灯设计 &#xff08;程序&#xff0b;原理图&#xff0b;设计报告&#xff09; 功能介绍 具体功能&#xff1a; 由STC单片机ADC0809模块LM386功放模块喇叭音频接口发光二极管电源构成 1.通过音频线输入可以播放电脑、手机、MP3里面的音乐。 2.AD对音频…...

API接口设计的艺术:如何提升用户体验和系统性能

在数字时代&#xff0c;API接口的设计对于用户体验和系统性能有着至关重要的影响。良好的设计可以显著提升应用程序的响应速度、可靠性和易用性。以下是几个关键点&#xff0c;帮助改善API接口的设计&#xff1a; 1. 理解并定义清晰的要求 用户研究&#xff1a;与最终用户进行…...

韩兴国/姜勇团队在《Trends in Plant Science》发表植物根系氮素再分配的观点文章!

氮素是陆地生态系统中的关键限制性营养元素&#xff0c;通过生物固氮和土壤氮供应通常远低高等植物的氮需求。当土壤氮素供应无法充分满足植物茎叶生长需求时&#xff0c;植物会通过自身营养器官&#xff08;如根或根茎&#xff09;再分配来实现氮的内部循环和再利用。尽管植物…...

52.Python-web框架-Django - 多语言编译-fuzzy错误

目录 1.起因 2.原因 3.解决方法 3.1手动移除fuzzy标记 3.2重新生成po文件&#xff0c;并检查是否还存在fuzzy标记 3.3重新编译生成mo文件 1.起因 在Django的国际化和本地化过程中&#xff0c;当你发现某些字段仅显示msgid&#xff0c;而不显示msgstr时&#xff0c;可能是…...

Linux自旋锁

面对没有获取锁的现场&#xff0c;通常有两种处理方式。 互斥锁&#xff1a;堵塞自己&#xff0c;等待重新调度请求自旋锁&#xff1a;循环等待该锁是否已经释放 本文主要讲述自旋锁 自旋锁其实是一种很乐观的锁&#xff0c;他认为只要再等一下下锁便能释放&#xff0c;避免…...

服务器----阿里云服务器重启或关机,远程连接进不去,个人博客无法打开

问题描述 在使用阿里云免费的新加坡服务器时&#xff0c;发现重启或者是关机在开服务器后&#xff0c;就会出现远程连接不上、个人博客访问不了等问题 解决方法 进入救援模式连接主机&#xff0c;用户名是root&#xff0c;密码是自己设置的 点击访问博客查看更多内容...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...