当前位置: 首页 > news >正文

Python将字符串用特定字符分割并前面加序号

Python将字符串用特定字符分割并前面加序号

Python将字符串用特定字符分割并前面加序号,今天项目中就遇到,看着不难,得花点时间搞出来急用啊,在网上找了一圈,没发现有完整流程的文章。所以就搞出来并写了这个文章。仅供大家学习和项目上用。
在这里插入图片描述
在这里插入图片描述

第一步,应用背景

有这么一个字符串,有多个店名,想以店名分割并加上换行和序号,这样看起来字符串更加结构化,就取出来一个举例。
字符串

m_n = '''店名:huahuadebaby
邮箱:ak3097150480@163.com
ID:A36BJDGOVPQHNP
店名:shanxiyongganganggang
邮箱:shuigua7593@163.com
ID:A2A6KCSCLMCS0V
店名:SIXNITRS
邮箱:i15249615568@163.com
ID:A1GVT3U4OZT1Y9'''

想要达到的效果

1. 店名:huahuadebaby
邮箱:ak3097150480@163.com
ID:A36BJDGOVPQHNP2. 店名:shanxiyongganganggang
邮箱:shuigua7593@163.com
ID:A2A6KCSCLMCS0V3. 店名:SIXNITRS
邮箱:i15249615568@163.com
ID:A1GVT3U4OZT1Y9

第二步、直接上代码

m_n = '''店名:huahuadebaby
邮箱:ak3097150480@163.com
ID:A36BJDGOVPQHNP
店名:shanxiyongganganggang
邮箱:shuigua7593@163.com
ID:A2A6KCSCLMCS0V
店名:SIXNITRS
邮箱:i15249615568@163.com
ID:A1GVT3U4OZT1Y9'''m_n_list = m_n.split("店名")
m_n_list.pop(0)# print(m_n_list)
char_to_add = "店名"
new_list = [char_to_add + element for element in m_n_list]# 使用例子
#strings = ["Apple", "Banana", "Cherry"]def add_number_before_string(string_list, start_number=1):formatted_strings = [(f"{i}. {s}") for i, s in enumerate(string_list, start=start_number)]return formatted_stringsnumbered_strings = add_number_before_string(new_list)huanhang = "\n"
new_list = [huanhang + element for element in numbered_strings]
# print(new_list)
for s in new_list:print(s)new_str = ''.join(new_list)
print(new_str)

第三步、运行结果

1. 店名:huahuadebaby
邮箱:ak3097150480@163.com
ID:A36BJDGOVPQHNP2. 店名:shanxiyongganganggang
邮箱:shuigua7593@163.com
ID:A2A6KCSCLMCS0V3. 店名:SIXNITRS
邮箱:i15249615568@163.com
ID:A1GVT3U4OZT1Y9

在这里插入图片描述

相关文章:

Python将字符串用特定字符分割并前面加序号

Python将字符串用特定字符分割并前面加序号 Python将字符串用特定字符分割并前面加序号,今天项目中就遇到,看着不难,得花点时间搞出来急用啊,在网上找了一圈,没发现有完整流程的文章。所以就搞出来并写了这个文章。仅…...

【第16章】Vue实战篇之跨域解决

文章目录 前言一、浏览器跨域二、配置代理1.公共请求2.代理配置 总结 前言 前后端项目分离衍生出浏览器跨域问题,开发之前我们通过配置代理解决这个问题。 一、浏览器跨域 浏览器的跨域问题主要是由于浏览器的同源策略导致的。同源策略是浏览器的一个安全功能&…...

【PB案例学习笔记】-22制作一个语音朗读金额小应用

写在前面 这是PB案例学习笔记系列文章的第22篇,该系列文章适合具有一定PB基础的读者。 通过一个个由浅入深的编程实战案例学习,提高编程技巧,以保证小伙伴们能应付公司的各种开发需求。 文章中设计到的源码,小凡都上传到了gite…...

glmark2代码阅读总结

glmark2代码阅读总结 一、总体 用输入参数生成testbench项用scene和benchmark管理进行复用通过类的重载,创建出不同的分支和具体的实现点,如scene和mainloop类用例执行又规划,每个scene都统一有setup,等使用scene的继承关系&…...

第 6 章 监控系统 | 监控套路 - 总结

前面,我们使用 Prometheus + Grafana + Node Exporter 实现虚拟机监控及告警。 那么,😇 监控的套路究竟是什么呢? 第 1 步:暴露 metrics,通过某个 exporter 将 metrics 暴露出来第 2 步:配置 Prometheus 抓取上面暴露的 metrics 数据第 3 步:加速 metrics 显示,配置…...

VsCode中C文件调用其他C文件函数失败

之前一直使用CodeBlocks,最近使用vscode多,感觉它比较方便,但在调用其他C文件的时候发现报错以下内容基于单C文件运行成功,否则请移步 博文:VSCode上搭建C/C开发环境 报错信息 没有使用CodeRunner插件,弹…...

css中content属性你了解多少?

在CSS中,content属性通常与伪元素(如 ::before 和 ::after)一起使用,用于在元素的内容之前或之后插入生成的内容。这个属性不接受常规的HTML内容,而是接受一些特定的值,如字符串、属性值、计数器值等。 以…...

JVM-GC-G1垃圾回收器

JVM-GC-G1垃圾回收器 基本概念 card table card table概念是为了解决新生代对象进入老年代时,在进行新生代扫描的时候会遍历老年代对象的问题。将内存分为多个card,如果在一个老年代card中存在引用新生代对象的对象,则将该区域标记及为dirty card。 CS…...

【Ubuntu通用压力测试】Ubuntu16.04 CPU压力测试

使用 stress 对CPU进行压力测试 我也是一个ubuntu初学者,分享是Linux的优良美德。写的不好请大佬不要喷,多谢支持。 sudo apt-get update 日常先更新再安装东西不容易出错 sudo apt-get upgrade -y 继续升级一波 sudo apt-get install -y linux-tools…...

Artix Linux 默认不使用 systemd

开发者选择不使用systemd,而倾向于使用OpenRC或runit作为其初始化系统的原因。 哲学和设计原则:Systemd是一个功能丰富的初始化系统和系统管理器,它集成了许多功能,但这也导致它的设计哲学与一些用户或开发者的偏好不符。有些用户…...

JVM-GC-CMS垃圾回收器

JVM-CMS垃圾回收器 CMS垃圾回收的步骤 1. 初始标记(InitialMarking) 这是一个STW的过程,并行标记,只是标记GC Roots能直接关联到的对象。由于GC Root直接关联的对象少,因此STW时间比较短。 2. 并发标记 非STW的过程&…...

【玩转google云】实战:如何在GKE上使用Helm安装和配置3节点的RabbitMQ集群

需求 因项目需要需要在Google Kubernetes Engine (GKE) 中使用Helm安装一个3节点的RabbitMQ集群,配置用户名和密码,开通公网访问的Web管理界面,指定namespace为mq,并使用5G的硬盘存储MQ的数据。 前提条件 GKE集群:确保你有一个运行中的GKE集群。Helm工具:确保已安装Hel…...

【神经网络】深度神经网络

深度神经网络(Deep Neural Network,简称DNN)是一种模仿人脑神经网络结构和工作原理的机器学习模型。它通过层级化的特征学习和权重调节,能够实现复杂任务的高性能解决方案。深度神经网络由多个神经元层组成,每个神经元…...

机器学习算法 —— K近邻(KNN分类)

🌟欢迎来到 我的博客 —— 探索技术的无限可能! 🌟博客的简介(文章目录) 目录 KNN的介绍和应用KNN的介绍1) KNN建立过程2) 类别的判定KNN的优点KNN的缺点KNN的应用实战KNN分类数据集 —— KNN分类库函数导入数据导入模型训练&可视化原理简析莺尾花数据集 —— KNN分…...

Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码

Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码 可封装APP,适合做猫狗宠物类的发信息发布,当然懂的修改一下,做其他信息发布也是可以的。 Thinkphp5内核流浪猫流浪狗宠物领养平台H5源码...

c++ 智能指针使用注意事项及解决方案

c11智能指针 shared_ptr介绍注意事项示例解决方案 weak_ptr特点示例 unique_ptr特点示例 shared_ptr 介绍 shared_ptr 是一种智能指针,用于自动管理动态分配的对象的生命周期。它通过引用计数机制来确保当最后一个 shared_ptr 指向一个对象时,该对象会…...

SQLite Delete 语句

SQLite Delete 语句 SQLite 的 DELETE 语句用于从表中删除数据。它是 SQL 数据库管理中非常基础且重要的操作之一。在使用 DELETE 语句时,可以删除表中的特定行,也可以删除整个表的数据。本文将详细介绍 SQLite 中的 DELETE 语句,包括其语法、用法以及如何安全地执行删除操…...

vue3的基本使用方法

【 vue3实例 】 【 0 】对象、方法和属性 对象(Object): 对象是编程中的一个数据结构,它可以包含多种数据类型,包括数字、字符串、布尔值、数组、其他对象等。对象通常由一系列属性和方法组成。在面向对象编程&…...

Java数据结构与算法(盛水的容器贪心算法)

前言 . - 力扣(LeetCode) 贪心算法(Greedy Algorithm)是一种在每一步选择中都采取当前状态下最优或最佳的选择,以期望通过一系列的局部最优选择达到全局最优解的算法。贪心算法的核心思想是贪心选择性质和最优子结构性质。 贪心算法的基本步骤 建立模型:将问题分解为一…...

MYSQL 数字(Aggregate)函数

目录 1、AVG() 2、MAX() 3、MIN() 4、SUM() 5、COUNT() 6、LIMIT() 1、AVG() 解释:返回数值列(字段)的平均值。 语法格式:SELECT AVG(column_name) FROM table_name 中文注释:select AVG(数值列/字段) from 表名 ; 用法&#xff1…...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异&#xff…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅(Pub/Sub)模式与专业的 MQ(Message Queue)如 Kafka、RabbitMQ 进行比较,核心的权衡点在于:简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

mac:大模型系列测试

0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何&#xff0c;是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试&#xff0c;是可以跑通文章里面的代码。训练速度也是很快的。 注意…...