当前位置: 首页 > news >正文

3.1. 马氏链-马氏链的定义和示例

马氏链的定义和示例

  • 马氏链的定义和示例
    • 1. 马氏链的定义
    • 2. 马氏链的示例
      • 2.1. 随机游走
      • 2.2. 分支过程
      • 2.3. Ehrenfest chain
      • 2.4. 遗传模型
      • 2.5. M/G/1 队列

马氏链的定义和示例

1. 马氏链的定义

对于可数状态空间的马氏链, 马氏性指的是给定当前状态, 其他过去的状态与未来的预测无关. 即对任意状态 i 0 , … i n − 1 , i i_{0}, \ldots i_{n-1}, i i0,in1,i, j j j
P ( X n + 1 = j ∣ X n = i , X n − 1 = i n − 1 , … X 0 = i 0 ) = P ( X n + 1 = j ∣ X n = i ) P\left(X_{n+1}=j \mid X_{n}=i, X_{n-1}=i_{n-1}, \ldots X_{0}=i_{0}\right)=P\left(X_{n+1}=j \mid X_{n}=i\right) P(Xn+1=jXn=i,Xn1=in1,X0=i0)=P(Xn+1=jXn=i)

称条件概率 P ( X n + 1 = j ∣ X n = i ) P\left(X_{n+1}=j \mid X_{n}=i\right) P(Xn+1=jXn=i)为马氏链 { X n , n = 0 , 1 , 2 , . . . } \{X_n,n=0,1,2,...\} {Xn,n=0,1,2,...}的一步转移概率, 简称转移概率, 记为 p i j p_{ij} pij, 表示处于状态 i i i的过程下一步转移到状态 j j j的概率.

2. 马氏链的示例

2.1. 随机游走

示例5.1.1 (随机游走的转移概率) ξ 1 , ξ 2 , … ∈ Z d \xi_{1}, \xi_{2}, \ldots \in \mathbf{Z}^{d} ξ1,ξ2,Zd独立, 分布为 μ \mu μ. X n = X 0 + ξ 1 + ⋯ + ξ n X_{n}=X_{0}+\xi_{1}+\cdots+\xi_{n} Xn=X0+ξ1++ξn, 其中 X 0 X_{0} X0是常数. 则 X n X_{n} Xn是马氏链,转移概率为 p ( i , j ) = μ ( { j − i } ) p(i, j)=\mu(\{j-i\}) p(i,j)=μ({ji}).

证明: 证明 X n X_{n} Xn是马氏链. 若 μ j \mu_{j} μj ξ j \xi_{j} ξj的分布, 由于 X n X_n Xn ξ n + 1 \xi_{n+1} ξn+1独立, 则由示例4.1.7 (二元独立随机变量函数关于某变量的条件期望)
P ( X n + 1 ∈ B ∣ X n ) = P ( X n + ξ n + 1 ∈ B ∣ X n ) = μ n + 1 ( B − X n ) P\left(X_{n+1} \in B \mid X_{n}\right)=P\left(X_{n}+\xi_{n+1} \in B \mid X_{n}\right)=\mu_{n+1}\left(B-X_{n}\right) P(Xn+1BXn)=P(Xn+ξn+1BXn)=μn+1(BXn)
P ( X n + 1 ∈ B ∣ X n ) ∈ σ ( X n ) ⊂ F P\left(X_{n+1} \in B \mid X_{n}\right)\in \sigma(X_n)\subset \mathcal{F} P(Xn+1BXn)σ(Xn)F, 由定理4.1.12可得
P ( X n + 1 ∈ B ∣ X n ) = P ( X n + 1 ∈ B ∣ F n ) P\left(X_{n+1} \in B \mid X_{n}\right)=P\left(X_{n+1} \in B \mid \mathcal{F}_{n}\right) P(Xn+1BXn)=P(Xn+1BFn)

习题5.1.6 (以概率 θ \theta θ正向走, 1 − θ 1-\theta 1θ负向走的随机游走是一个非时齐的马氏链) θ , U 1 , U 2 , … \theta, U_{1}, U_{2}, \ldots θ,U1,U2, ( 0 , 1 ) (0,1) (0,1)上的独立均匀分布. 若 U i ≤ θ U_{i} \leq \theta Uiθ, X i = 1 X_{i}=1 Xi=1; 若 U i > θ U_{i}>\theta Ui>θ, X i = − 1 X_{i}=-1 Xi=1. S n = X 1 + ⋯ + X n S_{n}=X_{1}+\cdots+X_{n} Sn=X1++Xn.

  • ( i ) (i) (i) 转移概率 P ( X n + 1 = 1 ∣ X 1 , … , X n ) P\left(X_{n+1}=1 \mid X_{1}, \ldots, X_{n}\right) P(Xn+1=1X1,,Xn)只与 S n S_n Sn相关;
  • ( i i ) (ii) (ii) S n S_{n} Sn是一个非时齐马尔可夫链. 自然, S n S_{n} Sn是一个估计 θ \theta θ的充分统计量.

证明:(i) 令 i 1 , … , i n ∈ { − 1 , 1 } i_{1}, \ldots, i_{n} \in\{-1,1\} i1,,in{1,1}, N = ∣ { m ≤ n : i m = 1 } ∣ N=\left|\left\{m \leq n: i_{m}=1\right\}\right| N={mn:im=1}.
P ( X n + 1 = 1 ∣ X 1 = i 1 , … , X n = i n ) = P ( X 1 = i 1 , … , X n = i n , X n + 1 = 1 ) P ( X 1 = i 1 , … , X n = i n ) ( 重期望公式 ) = ∫ θ N + 1 ( 1 − θ ) n − N d θ ∫ θ N ( 1 − θ ) n − N d θ = ( S n / 2 + n / 2 + 1 ) ! / ( n + 2 ) ! ( S n / 2 + n / 2 ) ! / ( n + 1 ) ! = S n + n + 2 2 n + 4 \begin{aligned} P\left(X_{n+1}=1 \mid X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)&=\frac{P\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n}, X_{n+1}=1\right)}{P\left(X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)}\\ (\text{重期望公式})&=\frac{\int \theta^{N+1}(1-\theta)^{n-N} d \theta}{\int \theta^{N}(1-\theta)^{n-N} d \theta}\\ &=\frac{\left(S_{n}/2+n/2+1\right) ! /(n+2) !}{(S_{n}/2+n/2)! /(n+1) !}=\frac{S_{n}+n+2}{2n+4} \end{aligned} P(Xn+1=1X1=i1,,Xn=in)(重期望公式)=P(X1=i1,,Xn=in)P(X1=i1,,Xn=in,Xn+1=1)=θN(1θ)nNdθθN+1(1θ)nNdθ=(Sn/2+n/2)!/(n+1)!(Sn/2+n/2+1)!/(n+2)!=2n+4Sn+n+2
上式由 ∫ 0 1 x m ( 1 − x ) k d x = m ! k ! / ( m + k + 1 ) ! \int_{0}^{1} x^{m}(1-x)^{k} d x=m ! k ! /(m+k+1) ! 01xm(1x)kdx=m!k!/(m+k+1)!得到.

习题5.1.1. i.i.d序列取值数量序列是马氏链 . 令 ξ 1 , ξ 2 , … ∈ { 1 , 2 , … , N } \xi_{1}, \xi_{2}, \ldots\in\{1,2, \ldots, N\} ξ1,ξ2,{1,2,,N} i.i.d, 各点取值概率 1 / N 1 / N 1/N. 证明 X n = ∣ { ξ 1 , … , ξ n } ∣ X_{n}=\left|\left\{\xi_{1}, \ldots, \xi_{n}\right\}\right| Xn={ξ1,,ξn}是马氏链, 并计算转移概率.

证明 X n + 1 X_{n+1} Xn+1依赖于 X n X_{n} Xn ξ n + 1 \xi_{n+1} ξn+1, 自然是马氏链. 转移概率可以表示为:
p ( k , k + 1 ) = 1 − k N , p ( k , k ) = k N , p ( i , j ) = 0 其他 p(k, k+1)=1-\frac{k}{N}, \quad p(k, k)=\frac{k}{N}, \quad p(i, j)=0 \text {其他} p(k,k+1)=1Nk,p(k,k)=Nk,p(i,j)=0其他

习题5.1.2.对称随机游走最大值序列不是马氏链 S 0 = 0 , S n = ξ 1 + ⋯ ξ n S_{0}=0, S_{n}=\xi_{1}+\cdots \xi_{n} S0=0,Sn=ξ1+ξn是对称随机游走, X n = max ⁡ { S m : 0 ≤ m ≤ n } X_{n}=\max \left\{S_{m}: 0 \leq m \leq n\right\} Xn=max{Sm:0mn}. X n X_{n} Xn不是马氏链.

证明:当 X n = m , X n − 1 = m − 1 X_{n}=m,X_{n-1}=m-1 Xn=m,Xn1=m1, 则 X n = S n X_n=S_n Xn=Sn, 故
P ( X n + 1 = m + 1 ∣ X n = m , X n − 1 = m − 1 ) = 1 / 2 \mathbb{P}\left(X_{n+1}=m+1 \mid X_{n}=m, X_{n-1}=m-1\right)=1/2 P(Xn+1=m+1Xn=m,Xn1=m1)=1/2
X n = m , X n − 1 = m X_{n}=m,X_{n-1}=m Xn=m,Xn1=m, P ( X n + 1 = m + 1 ∣ X n = m , X n − 1 = m ) = 0 \mathbb{P}\left(X_{n+1}=m+1 \mid X_{n}=m, X_{n-1}=m\right)=0 P(Xn+1=m+1Xn=m,Xn1=m)=0, X n X_{n} Xn非马氏链.

2.2. 分支过程

示例 5.1.2 (分支过程的转移概率) S = { 0 , 1 , 2 , … } S=\{0,1,2, \ldots\} S={0,1,2,}, 第 n n n代每个个体 i i i产生i.i.d的后代数 ξ 1 , ξ 2 , … \xi_{1}, \xi_{2}, \ldots ξ1,ξ2,, 则 p ( i , j ) = P ( ∑ m = 1 i ξ m = j ) p(i, j)=P(\sum_{m=1}^{i} \xi_{m}=j) p(i,j)=P(m=1iξm=j), .

2.3. Ehrenfest chain

示例 5.1.3 (Ehrenfest chain) 第一个瓮有 k k k个球, 第二个瓮有 r − k r-k rk个, 随机挑选一个球移到另一个瓮中. 令 S = { 0 , 1 , … , r } S=\{0,1, \ldots, r\} S={0,1,,r}, 第一个瓮中球数的转移概率为
p ( k , k + 1 ) = ( r − k ) / r , p ( k , k − 1 ) = k / r , p ( i , j ) = 0 否则  , p(k, k+1)=(r-k) / r, p(k, k-1)=k / r, p(i, j)=0 \quad \text {否则 }, p(k,k+1)=(rk)/r,p(k,k1)=k/r,p(i,j)=0否则 ,Ehrenfest用此模拟两个腔室(大小形状相同,一个小孔连接)间空气分子的划分.

习题5.1.5. 假设左瓮和右瓮, 每个瓮 m m m个球. b b b ( ≤ m \leq m m ) 个黑色球, 2 m − b 2 m-b 2mb个白色球. 每次从每个瓮中选择一个球然后互相交换. 计算左瓮黑球数的转移概率.

证明 p ( n , n + 1 ) = m − n m ⋅ b − n m , p ( n , n − 1 ) = n m ⋅ m + n − b m p(n, n+1) =\frac{m-n}{m} \cdot \frac{b-n}{m},p(n, n-1) =\frac{n}{m} \cdot \frac{m+n-b}{m} p(n,n+1)=mmnmbn,p(n,n1)=mnmm+nb

2.4. 遗传模型

示例 5.1.4 (Wright–Fisher遗传模型) 设总体中的个体数为 N N N, 每个个体的基因按基因 A A A 的基因频率的大小, 在下一代中转移成为基因 A A A.
换句话说, 如果在第 n n n代母体中基因 A A A出现了 i i i次, 基因 a a a出现了 N − i N-i Ni次, 则下一代出现基因 A A A的概率为 p i = i N p_{i}=\frac{i}{N} pi=Ni, 而出现基因 a a a 的概率为 1 − p i 1-p_{i} 1pi.

  • (i) 令 X n X_n Xn表示第 n n n代基因 A A A出现的次数, 计算 p i j = P { X n + 1 = j ∣ X n = i } p_{i j}=P\left\{X_{n+1}=j \mid X_{n}=i\right\} pij=P{Xn+1=jXn=i}.
  • (ii) 引入变异, 即 A A A在下一代有概率 μ \mu μ a a a, 而 a a a在下一代有概率 ν \nu ν A A A.

证明:(i) 记 X n X_{n} Xn 为第 n n n 代中携带基因 A A A 的个体数, 则易知 { X n } \left\{X_{n}\right\} {Xn} 是一个状态空间为 S = { 0 , 1 , ⋯ , N } S=\{0,1, \cdots, N\} S={0,1,,N} 的时齐Markov链, 其转移概率矩阵为 P = ( p i j ) \boldsymbol{P}=\left(p_{i j}\right) P=(pij), 其中
p i j = P { X n + 1 = j ∣ X n = i } = C N j p i j ( 1 − p i ) N − j = C N j ( i N ) j ( 1 − i N ) N − j p_{i j}=P\left\{X_{n+1}=j \mid X_{n}=i\right\}=\mathrm{C}_{N}^{j} p_{i}^{j}\left(1-p_{i}\right)^{N-j}=\mathrm{C}_{N}^j\left(\frac{i}{ N}\right)^{j}\left(1-\frac{i}{N}\right)^{N-j} pij=P{Xn+1=jXn=i}=CNjpij(1pi)Nj=CNj(Ni)j(1Ni)Nj
在这个模型中,状态 X = 0 X=0 X=0 N N N对应于总体是 A A A a a a,称为吸收状态 (absorbing states), 即 p ( x , x ) = 1 p(x,x)=1 p(x,x)=1. 这个链最终将进入状态 0 0 0或状态 N N N.

(ii) 产生 A A A的概率是 ρ i = ( i / N ) ( 1 − u ) + ( N − i / N ) v \rho_{i}=({i}/{N})(1-u)+({N-i}/{N}) v ρi=(i/N)(1u)+(Ni/N)v. 转移概率为
p ( i , j ) = ( N j ) ( ρ i ) j ( 1 − ρ i ) N − j p(i, j)=\left(\begin{array}{c} N \\ j \end{array}\right)\left(\rho_{i}\right)^{j}\left(1-\rho_{i}\right)^{N-j} p(i,j)=(Nj)(ρi)j(1ρi)Nj
如果 u u u v v v都是正的, 0 0 0 N N N就不再是吸收态了,系统可收敛到一个平衡分布.

习题5.1.3 (连续成对的抛硬币序列). ξ 0 , ξ 1 , … ∈ { H , T } \xi_{0}, \xi_{1}, \ldots\in\{H, T\} ξ0,ξ1,{H,T}独立同分布, 每个取值概率为 1 / 2 1 / 2 1/2 (硬币正反面). X n = ( ξ n , ξ n + 1 ) X_{n}=\left(\xi_{n}, \xi_{n+1}\right) Xn=(ξn,ξn+1)是一个马氏链, 计算转移概率 p p p以及 p 2 p^{2} p2.

证明:由于 X n = ( ξ n , ξ n + 1 ) X_{n}=\left(\xi_{n}, \xi_{n+1}\right) Xn=(ξn,ξn+1), 可知 X n − 2 = ( ξ n − 2 , ξ n − 1 ) , ⋯ , X 0 = ( ξ 0 , ξ 1 ) X_{n-2}=\left(\xi_{n-2}, \xi_{n-1}\right), \cdots, X_{0}=\left(\xi_{0}, \xi_{1}\right) Xn2=(ξn2,ξn1),,X0=(ξ0,ξ1) X n X_{n} Xn独立,因此 X n X_{n} Xn是马氏链. 易计算得到转移概率 p p p p 2 p^{2} p2.

习题5.1.4 (兄弟姐妹结对遗传). 两只动物交配的直系后代中随机选择两个异性个体交配, 过程持续. 假设个体是 A A , A a , a a AA,Aa,aa AA,Aa,aa中的一个, 从每个父母中选择一个字母来决定后代类型, 计算第 n n n代基因型对的转移概率.

证明:该马氏链第 n n n代基因型对共有以下6个状态, 易计算转移概率
A A , A A A A , A a A A , a a A a , A a A a , a a a a , a a A A, A A \quad A A, A a \quad A A, a a \quad A a, A a \quad A a, a a \quad a a, a a AA,AAAA,AaAA,aaAa,AaAa,aaaa,aa

2.5. M/G/1 队列

示例5.1.5. M/G/1 队列:客户 n n n开始服务的队列人数 客户按照速率为 λ \lambda λ的泊松过程到达. 不相交时间间隔内的到达数独立,每个客户服务时长独立,分布为 F F F.
X n X_n Xn为第 n n n个客户进入服务时队列的客户数(包括服务中的客户). X 0 = x X_0=x X0=x表示客户 0 0 0刚开始服务时队列有 x x x人. 计算 X n X_n Xn的转移概率.

证明:在一个服务时间内 k k k个顾客到达的概率为 a k a_k ak
a k = ∫ 0 ∞ e − λ t ( λ t ) k k ! d F ( t ) a_{k}=\int_{0}^{\infty} e^{-\lambda t} \frac{(\lambda t)^{k}}{k !} d F(t) ak=0eλtk!(λt)kdF(t)
ξ i \xi_{i} ξi表示第 i i i次服务时间内到达的客户数减去完成服务的1个客户, 则 ξ 1 , ξ 2 , … \xi_{1}, \xi_{2}, \ldots ξ1,ξ2,独立同分布, 且 P ( ξ i = k − 1 ) = a k P\left(\xi_{i}=k-1\right)=a_{k} P(ξi=k1)=ak. 可得 X n + 1 = ( X n + ξ n + 1 ) + X_{n+1}=\left(X_{n}+\xi_{n+1}\right)^{+} Xn+1=(Xn+ξn+1)+ (正部分仅在 X n = 0 X_n=0 Xn=0 ξ n + 1 = − 1 \xi_{n+1}=−1 ξn+1=1时生效).
很容易看出,序列 ξ i \xi_{i} ξi是一个具有如下转移概率的马尔可夫链
p ( 0 , 0 ) = a 0 + a 1 , p ( j , j − 1 + k ) = a k 若  j ≥ 1 或 k > 1 p(0,0)=a_{0}+a_{1},p(j, j-1+k)=a_{k} \quad \text {若 } j \geq 1 \text { 或} k>1 p(0,0)=a0+a1,p(j,j1+k)=ak j1 k>1其中, a k a_{k} ak形式复杂但不重要,可以假设 a k > 0 , k ≥ 0 a_{k}>0, k \geq 0 ak>0,k0 ∑ k > 0 a k = 1 \sum_{k>0} a_{k}=1 k>0ak=1.

相关文章:

3.1. 马氏链-马氏链的定义和示例

马氏链的定义和示例 马氏链的定义和示例1. 马氏链的定义2. 马氏链的示例2.1. 随机游走2.2. 分支过程2.3. Ehrenfest chain2.4. 遗传模型2.5. M/G/1 队列 马氏链的定义和示例 1. 马氏链的定义 对于可数状态空间的马氏链, 马氏性指的是给定当前状态, 其他过去的状态与未来的预测…...

红利之外的A股底仓选择:A50

内容提要 华泰证券指出,当前指数层面下行风险不大,市场再入震荡期下,可关注三条配置线索:1)A50为代表的产业巨头;2)以家电/食饮/物流/出版为代表的稳健消费龙头,3)消费电…...

wondershaper 一款限制 linux 服务器网卡级别的带宽工具

文章目录 一、关于wondershaper二、文档链接三、源码下载四、限流测试五、常见报错1. /usr/local/sbin/wondershaper: line 145: tc: command not found2. Failed to download metadata for repo ‘appstream‘: Cannot prepare internal mirrorlist: No URLs.. 一、关于wonder…...

独孤思维:盲目进群,根本赚不到钱

01 我看有些伙伴,对标同行找写作素材和灵感的时候。 喜欢把对标文章发给ai提炼总结。 这个方法好是好,但是,有一个问题。 即,无法感受全文的细节。 更无法感受作者的情感和温度。 就好像电影《记忆大师》一样。 我提取了记…...

针对indexedDB的简易封装

连接数据库 我们首先创建一个DBManager类,通过这个类new出来的对象管理一个数据库 具体关于indexedDB的相关内容可以看我的这篇博客 indexedDB class DBManager{}我们首先需要打开数据库,打开数据库需要数据库名和该数据库的版本 constructor(dbName,…...

网络编程--网络理论基础(二)

这里写目录标题 网络通信流程mac地址、ip地址arp协议交换机路由器简介子网划分网关 路由总结 为什么ip相同的主机在与同一个互联网服务通信时不冲突公网ip对于同一个路由器下的不同设备,虽然ip不冲突,但是因为都是由路由器的公网ip转发通信,接…...

Python MongoDB 基本操作

本文内容主要为使用Python 对Mongodb数据库的一些基本操作整理。 目录 安装类库 操作实例 引用类库 连接服务器 连接数据库 添加文档 添加单条 批量添加 查询文档 查询所有文档 查询部分文档 使用id查询 统计查询 排序 分页查询 更新文档 update_one方法 upd…...

Node.js 入门:

Node.js 是一个开源、跨平台的 JavaScript 运行时环境,它允许开发者在浏览器之外编写命令行工具和服务器端脚本。以下是一些关于 Node.js 的基础教程: 1. **Node.js 入门**: - 了解 Node.js 的基本概念,包括它是一个基于 Chro…...

java8 List的Stream流操作 (实用篇 三)

目录 java8 List的Stream流操作 (实用篇 三) 初始数据 1、Stream过滤: 过滤-常用方法 1.1 筛选单元素--年龄等于18 1.2 筛选单元素--年龄大于18 1.3 筛选范围--年龄大于18 and 年龄小于40 1.4 多条件筛选--年龄大于18 or 年龄小于40 and sex男 1.5 多条件筛…...

机器学习python实践——数据“相关性“的一些补充性个人思考

在上一篇“数据白化”的文章中,说到了数据“相关性”的概念,但是在统计学中,不仅存在“相关性”还存在“独立性”等等,所以,本文主要对数据“相关性”进行一些补充。当然,如果这篇文章还能入得了各位“看官…...

MySQL——触发器(trigger)基本结构

1、修改分隔符符号 delimiter $$ $$可以修改 2、创建触发器函数名称 create trigger 函数名 3、什么样在操作触发,操作哪个表 after :……之后触发 before :……之后触发 insert :……之后触发 update :……之后触…...

数字孪生定义及应用介绍

数字孪生定义及应用介绍 1 数字孪生(Digital Twin, DT)概述1.1 定义1.2 功能1.3 使用场景1.4 数字孪生三步走1.4.1 数字模型1.4.2 数字影子1.4.3 数字孪生 数字孪生地球平台Earth-2 参考 1 数字孪生(Digital Twin, DT)概述 数字孪…...

数据赋能(122)——体系:数据清洗——技术方法、主要工具

技术方法 数据清洗标准模型是将数据输入到数据清洗处理器,通过一系列步骤“清理”数据,然后以期望的格式输出清理过的数据。数据清洗从数据的准确性、完整性、一致性、惟一性、适时性、有效性几个方面来处理数据的丢失值、越界值、不一致代码、重复数据…...

【SCAU数据挖掘】数据挖掘期末总复习题库简答题及解析——中

1. 某学校对入学的新生进行性格问卷调查(没有心理学家的参与),根据学生对问题的回答,把学生的性格分成了8个类别。请说明该数据挖掘任务是属于分类任务还是聚类任务?为什么?并利用该例说明聚类分析和分类分析的异同点。 解答: (a)该数据…...

2024年注册安全工程师报名常见问题汇总!

​ 注册安全工程师报名 24年注册安全工程师报名已正式拉开序幕,报名时间为6月18日—7月10日,考试时间为10月26日—10月27日。 目前经有12个地区公布了2024年注册安全工程师报名时间: 注册安全工程师报名信息完善 根据注安报名系统提示&am…...

JRebel-JVMTI [FATAL] Couldn‘t write to C:\Users\中文用户名-完美解决

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 热部署下载参考博客解决第一步第二步第三步:第四步: 热部署下载 下载后启动报错:JRebel-JVMTI [FATAL] Couldn’t write to C:\…...

STM32基于DMA数据转运和AD多通道

文章目录 1. DMA数据转运 1.1 初始化DMA步骤 1.2 DMA的库函数 1.3 设置当前数据寄存器 1.4 DMA获取当前数据寄存器 2. DMA数据转运 2.1 DMA.C 2.2 DMA.H 2.3 MAIN.C 3. DMAAD多通道 3.1 AD.C 3.2 AD.H 3.3 MAIN.C 1. DMA数据转运 对于DMA的详细解析可以看下面这篇…...

安卓应用开发——Android Studio中通过id进行约束布局

在Android开发中,布局通常使用XML文件来描述,而约束(如相对位置、大小等)可以通过多种方式实现,但直接使用ID进行约束并不直接对应于Android的传统布局系统(如LinearLayout、RelativeLayout等)。…...

Elasticsearch过滤器(filter):原理及使用

Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…...

Docker配置与使用详解

一、引言 随着云计算和微服务的兴起,Docker作为一种轻量级的容器化技术,越来越受到开发者和运维人员的青睐。Docker通过容器化的方式,将应用程序及其依赖项打包成一个可移植的镜像,从而实现了应用程序的快速部署和扩展。本文将详…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解:由来、作用与意义**一、知识点核心内容****二、知识点的由来:从生活实践到数学抽象****三、知识的作用:解决实际问题的工具****四、学习的意义:培养核心素养…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Ubuntu Cursor升级成v1.0

0. 当前版本低 使用当前 Cursor v0.50时 GitHub Copilot Chat 打不开&#xff0c;快捷键也不好用&#xff0c;当看到 Cursor 升级后&#xff0c;还是蛮高兴的 1. 下载 Cursor 下载地址&#xff1a;https://www.cursor.com/cn/downloads 点击下载 Linux (x64) &#xff0c;…...