Python实现逻辑回归与判别分析--西瓜数据集
数据
数据data内容如下:

读取数据:
import numpy as np
import pandas as pd
data = pd.read_excel('D:/files/data.xlsx')
将汉字转化为01变量:
label = []
for i in data['好瓜']:l = np.where(i == '是',1,0)label.append(int(l))
data['label'] = label
区分数据集,70%训练集和30%测试集:
from sklearn.model_selection import train_test_split
data_train,data_test = train_test_split(data,test_size=0.3,random_state=0) # random_state是为了保留种子,保证每次跑出来的数都一样
trainx,trainy = data_train[['密度','含糖率']],data_train['label']
testx, testy = data_test[['密度','含糖率']],data_test['label']
逻辑回归
逻辑回归主要解决二分类问题,通常称为正向类和负向类(1/0),被解释变量使用逻辑函数(又被称为Sigmoid函数)建模,形成一个特征变量的线性组合函数,逻辑函数总是返回一个0~1之间的概率值,如果该概率等于或大于一个用来区分的阈值(通常是0.5),则被预测为正向类,否则被预测为负向类。逻辑回归(也称对率回归)代码如下:
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(trainx,trainy)
model.predict(testx)
model.score(testx,testy) #预测准确度
判别分析
判别分析就是一种分类方法,即判断样本所属类别的一种统计方法,判别分析是在已知研究对象分成若干类并已取得各类的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类的方法。判别分析代码实现如下:
#线性判别分析
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
model = LinearDiscriminantAnalysis()
model.fit(trainx,trainy)
model.score(testx,testy) #预测准确度
相关文章:
Python实现逻辑回归与判别分析--西瓜数据集
数据 数据data内容如下: 读取数据: import numpy as np import pandas as pd data pd.read_excel(D:/files/data.xlsx) 将汉字转化为01变量: label [] for i in data[好瓜]:l np.where(i 是,1,0)label.append(int(l)) data[label] lab…...
课时154:项目发布_手工发布_手工发布
1.2.3 手工发布 学习目标 这一节,我们从 基础知识、简单实践、小结 三个方面来学习 基础知识 简介 为了合理的演示生产环境的项目代码发布,同时又兼顾实际实验环境的资源,我们这里将 B主机和C主机 用一台VM主机来实现,A主机单…...
鸿蒙开发 一 (四)、ArkTS开发 --UI篇
相对布局 RelativeContainer 支持容器内部的子元素设置相对位置关系子元素支持指定兄弟元素作为锚点,也支持指定父容器作为锚点,基于锚点做相对位置布局 //alignRules 写法let AlignRus:Record<string,Record<string,string|VerticalAlign|Horiz…...
影音发烧友必入:高清先生M8 8K蓝光播放机使用体验8K播放器
影音发烧友必入:高清先生M8 8K蓝光播放机使用体验 高清先生在5.18成功举办新品8K蓝光播放机“M8”的发布会后,心心念念想尝鲜,于是果断下单了一台。 外形 收到货后,是牛皮纸包装,醒目的“高清先生”标识印在正面&…...
【34W字CISSP备考笔记】域1:安全与风险管理
1.1 理解、坚持和弘扬职业道德 1.1.1.(ISC)职业道德规范 1、行为得体、诚实、公正、负责、守法。 2、为委托人提供尽职、合格的服务。 3、促进和保护职业。 4、保护社会、公益、必需的公信和自信,保护基础设施。 1.1.2.组织道德规范 1、RFC 1087 ࿰…...
Camtasia Studio 2024软件下载附加详细安装教程
amtasia Studio 2024是一款功能强大的屏幕录制和视频编辑软件,由TechSmith公司开发。这款软件不仅能够帮助用户轻松地记录电脑屏幕上的任何操作,还可以将录制的视频进行专业的编辑和制作,最终输出高质量的视频教程、演示文稿、培训课程等。 …...
人工智能(AI)与机器学习(ML):塑造未来的技术引擎
目录 前言 一、人工智能(AI)概述 二、机器学习(ML)的作用:深入解析与应用前景 1、机器学习的作用机制 2、机器学习在各个领域的应用 3、机器学习的挑战与前景 三、AI与ML的融合与应用:深度解析与前景…...
post为什么会发送两次请求详解
文章目录 导文跨域请求的预检复杂请求的定义服务器响应预检请求总结 导文 在Web开发中,开发者可能会遇到POST请求被发送了两次的情况,如下图: 尤其是在处理跨域请求时。这种现象可能让开发者感到困惑,但实际上它是浏览器安全机制…...
MySQl基础入门⑯【操作视图】完结
上一边文章内容 表准备 CREATE TABLE Students (id INT AUTO_INCREMENT PRIMARY KEY,name VARCHAR(100),email VARCHAR(255),major VARCHAR(100),score int,phone_number VARCHAR(20),entry_year INT,salary DECIMAL(10, 2) );数据准备 INSERT INTO Students (id, name, ema…...
Android Root全教程
1.安装指定镜像:https://blog.csdn.net/weixin_43846562/article/details/130028258 2.安装 magisk:https://blog.csdn.net/qq1337715208/article/details/115922514 3.打开 adb root:https://liwugang.github.io/2021/07/11/magisk_enable…...
对yoloV8进行标签过滤来实现行人检测
前言 上一章我们介绍的通过迁移学习,在新的行人数据集上使用已经学习到的特征和权重,从而更快地实现行人检测任务。模型就会调整其参数以适应新的数据集,以提高对行人的识别性能。接下来介绍一种更快更便捷的方法,依旧是基于yolo…...
论文阅读笔记:Towards Higher Ranks via Adversarial Weight Pruning
论文阅读笔记:Towards Higher Ranks via Adversarial Weight Pruning 1 背景2 创新点3 方法4 模块4.1 问题表述4.2 分析高稀疏度下的权重剪枝4.3 通过SVD进行低秩逼近4.4 保持秩的对抗优化4.5 渐进式剪枝框架 5 效果5.1 和SOTA方法对比5.2 消融实验5.3 开销分析 6 结…...
目前常用的后端技术
在后端开发中,有多种技术和框架可供选择,具体取决于项目的需求、团队的技能和经验,以及组织的架构决策。以下是一些常见的后端开发技术和框架: 1. 编程语言 Java: 广泛使用于企业级应用,有大量的库和框架…...
windows如何查看硬盘类型(查看磁盘类型)(查看是固态硬盘ssd还是机械硬盘hdd)(Windows优化驱动器——媒体类型)
文章目录 方法:使用Windows优化驱动器1、在任务栏搜索框中输入“优化驱动器”并打开它。2、在优化驱动器的窗口中,查看每个驱动器旁边的“媒体类型”。3、如果列出的是“固态驱动器”,那么它是SSD;如果是“硬盘驱动器”࿰…...
Java学习 (一) 环境安装
一、安装java环境 1、获取软件包 https://www.oracle.com/java/technologies/downloads/ .exe 文件一路装过去就行,最好别装c盘 ,我这里演示的时候是云主机只有C盘 2、配置环境变量 我的电脑--右键属性--高级系统设置--环境变量 在环境变量中添加如下配…...
**args和**kwargs是什么?
**args和 **kwargs是什么? **kwargs 是一个惯用的命名,指代一个字典(dictionary),其中包含了所有未在函数定义中明确指定的关键字参数。在 Python 中,函数的参数可以分为两类:位置参数…...
【STM32】GPIO简介
1.GPIO简介 GPIO是通用输入输出端口的简称,简单来说就是STM32可控制的引脚,STM32芯片的GPIO引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。 STM32芯片的GPIO被分成很多组,每组有16个引脚。 最基本的输出…...
移植案例与原理 - utils子系统之KV存储部件 (1)
Utils子系统是OpenHarmony的公共基础库,存放OpenHarmony通用的基础组件。这些基础组件可被OpenHarmony各业务子系统及上层应用所使用。公共基础库在不同平台上提供的能力: LiteOS-M内核:KV(key value)存储、文件操作、定时器、Dump系统属性。…...
数据结构---排序算法
个人介绍 hello hello~ ,这里是 code袁~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 🦁作者简介:一名喜欢分享和记录学习的…...
UE4 RPC进行网络同步
说明 基于UE本身提供的RPC同步机制 RPC远程过程调用允许客户端或服务器通过网络连接相互发送消息: 使用时需要注意: 1、必须从 Actor 上调用 2、Actor 必须被复制,注意勾选BP中Replicates,或使变量bReplicates true 3、注意如…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...
打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用
一、方案背景 在现代生产与生活场景中,如工厂高危作业区、医院手术室、公共场景等,人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式,存在效率低、覆盖面不足、判断主观性强等问题,难以满足对人员打手机行为精…...
