cv::阈值分割OTUS原理+代码
opencv库的阈值分割分为全局分割和局部分割
全局分割:普通分割
ret1,th1 = cv2.threshold(img,127, 255, cv2.THRESH_BINARY)
#127为阈值
#cv2.THRESH_BINARY |cv2.THRESH_BINARY_INV | cv2.THRESH_TRUNC|cv2.THRESH_TOZERO|cv2.THRESH_TOZERO_INV
局部分割:自适应分割,阈值自计算
th2=cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BINARY,11,2)
#阈值变为
#均值:cv2.ADAPTIVE_THRESH_MEAN_C,
#高斯加权:cv2.ADAPTIVE_THRESH_GAUSSIAN_C
#窗口大小:11
#c:均值-常数
特殊:OTUS 大津法,最大类间方差
ret2,th2 = cv2.threshold(img,0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
原理:
使用于双峰图像,将灰度直方图分为两部分,使得两部分类间方差最大,试了一下两部分类内方差最小也行,效果差不多,opencv的api用的是最大类间方差.
步骤:
灰度图片计算灰度直方图,并归一化
类间方差计算:其实就是求灰度的方差
假设当前灰度阈值为i,将[0,256]分为h1=[0,i-1]和h2=[i,256]两部分
求每一部分的灰度个数s = sum(h[i]),求s1,s2
求每一部分的灰度均值,mean = sum(h1[i]*i)/s求m1,m2,mg(总积分)
求每一个类间的方差,[s1*(m1-mg)*(m1-mg)+s2*(m2-mg)*(m2-mg)]/(s1+s2)
d.(1),类内方差v = sum((i-m)*(i-m)*h[i]/s),最小类内方差也行
i 取值[0,256],求使得类间方差最大的i就是阈值
import cv2
import numpy as np
import matplotlib.pyplot as pltimg = cv2.imread("otsu.jpg",0)hist = cv2.calcHist([img],[0],None,[256],[0,256])
histnorm = (hist-hist.min())/(hist.max()-hist.min())
bins = np.arange(256)# plt.plot(histnorm)
# plt.xlim([0,256])
# plt.show()fnmin = 99999
tmp = 0
fnmax = 0
tm = 0
p = hist/sum(hist)
histnorm = np.squeeze(histnorm)
for i in range(1,256):s1 = np.sum(histnorm[:i])s2 = np.sum(histnorm[i:])q1 = histnorm[i:]*bins[i:]m1 = np.sum(histnorm[:i] * bins[:i])/s1m2 = np.sum(histnorm[i:] * bins[i:])/s2mg = np.sum(histnorm* bins)/(s1+s2)#最大类间方差fm = (s1*(m1-mg)*(m1-mg)+ s2*(m2-mg)*(m2-mg))/(s1+s2)if fm>fnmax:fnmax = fmtm = i#最小类内方差v1 = np.sum((bins[:i] - m1)*(bins[:i] - m1)*(histnorm[:i])/s1)v2 = np.sum((bins[i:] - m2)*(bins[i:] - m2)*(histnorm[i:])/s2)fn = v1+v2if fn<fnmin:fnmin = fntmp = iret1,th1 = cv2.threshold(img,tm, 255, cv2.THRESH_BINARY)
print(tm,ret1)
ret2,th2 = cv2.threshold(img,tmp, 255, cv2.THRESH_BINARY)
print(tmp,ret2)
ret3,th3 = cv2.threshold(img,0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
print(ret3)cv2.imshow("th1",th1)
cv2.imshow("th2",th2)
cv2.imshow("th3",th3)
cv2.waitKey(0)
图片:从别博客里面保存的


结果:最大类间方差和cv2.THRESH_OTSU计算出来的阈值一样,最小类间方差要小一点




相关文章:

cv::阈值分割OTUS原理+代码
opencv库的阈值分割分为全局分割和局部分割全局分割:普通分割ret1,th1 cv2.threshold(img,127, 255, cv2.THRESH_BINARY) #127为阈值 #cv2.THRESH_BINARY |cv2.THRESH_BINARY_INV | cv2.THRESH_TRUNC|cv2.THRESH_TOZERO|cv2.THRESH_TOZERO_INV局部分割:…...

Postgresql-12.5 visual studio-2022 windows 添加pg工程并调试
pg内核学习,记录一下 文章目录安装包编译安装VS添加Postgresql工程调试源码安装包 (1)perl下载 https://www.perl.org/get.html (2)diff下载 http://gnuwin32.sourceforge.net/packages/diffutils.htm (…...
长沙学院2023 第一次蓝桥训练题解
每道题都在洛谷上,每个题都有很详细的题解,可以先自行做,不会再看题解。 题目解析思路都写在代码中,中文题面就不单独解释题意了。 P2440 木材加工(二分答案) 链接:P2440 木材加工 解析 代码…...

云端Docker搭建ABY库以及本地CLion使用
文章目录ABY的搭建以及使用前言ABY库的下载、安装及测试CLion配置后续杂项项目改名使用其他的库最后ABY的搭建以及使用 前言 仅做记录,仅供参考,不同人有不同的使用方式命令手敲,可能有错,自己辨识勿问,我懂的也不多…...
ES6-箭头函数、解构赋值、对象简写
箭头函数特点 1、 (只有1个形参) 可以省略() 2、 {} 可以省略 只有一句代码 或 只有返回值的时候,省略return 3、arguments 不可用,arguments在没有形参的时候可以拿到调用函数拿在的实参 获取伪数组通过Array.from转为真数组。 4、 箭头函数没有this, …...

【CSS】CSS 背景设置 ② ( 背景位置 | 背景位置-方位值设置 )
文章目录一、背景位置1、语法说明2、注意事项二、背景位置-方位值设置1、效果展示2、完整代码示例一、背景位置 1、语法说明 如果 盒子的大小 大于 背景图片的大小 , 默认的 图片 位置是 左上角 ; 设置背景位置的 CSS 语法如下 : background-position : length length backgro…...

HTML 扫盲
✏️作者:银河罐头 📋系列专栏:JavaEE 🌲“种一棵树最好的时间是十年前,其次是现在” 目录前言HTML 结构快速生成代码框架HTML 常见标签注释标签标题标签: h1-h6段落标签:p换行标签:br格式化标签…...

项目中用到的责任链模式
目录 1.什么是责任链?它的原理是什么? 2.应用场景 3.项目中的应用 传送门:策略模式,工作中你用上了吗? 1.什么是责任链?它的原理是什么? 将请求的发送和接收解耦,让多个接收对象…...

C++复习笔记--STL的string容器和vector容器
1--string容器string 本质上是一个类,其不同于指针 char*,string 类的内部封装了 char*,用于管理字符串,是一个 char* 型的容器;1-1--string构造函数string 的构造函数原型:string(); // 创建一个空的字符串…...

第一章 软件项目管理概述
项目(Project)是为了创造一个唯一的产品或提供一个唯一的服务而进行的临时性的努力。项目的特征PMBOK(A guide to the Project management Body Of Knowledge:项目管理知识体系指南)五大过程组和十大知识领域从时间角度出发,项目管理分为五大过程组:启动…...

【Linux系统编程】06:共享内存
共享内存 OVERVIEW共享内存一、文件上锁flock二、共享内存1.关联共享内存ftok2.获取共享内存shmget3.绑定共享内存shmat4.绑定分离shmdt5.控制共享内存shmctl三、亲缘进程间通信1.共享内存写入与读取2.共享内存解绑与删除3.共享内存综合四、非亲缘进程间通信1.通过sleep同步2.通…...

【专项】112. 路径总和
112. 路径总和 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。 叶子节点 …...

【数据结构】堆排序
堆是一种叫做完全二叉树的数据结构,可以分为大根堆,小根堆,而堆排序就是基于这种结构而产生的一种程序算法。大堆:每个节点的值都大于或者等于他的左右孩子节点的值小堆:每个结点的值都小于或等于其左孩子和右孩子结点…...

论文阅读笔记《GAMnet: Robust Feature Matching via Graph Adversarial-Matching Network》
核心思想 本文提出一种基于图对抗神经网络的图匹配算法(GAMnet),使用图神经网络作为生成器分别生成源图和目标图的节点的特征,并用一个多层感知机作为辨别器来区分两个特征是否来自同一个图,通过对抗训练的办法提高生成器特征提取…...

数据安全—数据完整性校验
1、数据安全保障三要素即 保密性 完整性、可用性机密性:要求数据不被他人轻易获取,需要进行数据加密。完整性:要求数据不被他人随意修改,需要进行签名技术可用性:要求服务不被他人恶意攻击,需要进行数据校验…...

Java 最小路径和
最小路径和中等给定一个包含非负整数的 m x n 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。说明:每次只能向下或者向右移动一步。示例 1:输入:grid [[1,3,1],[1,5,1],[4,2,1]]输出&…...

Flask+VUE前后端分离的登入注册系统实现
首先Pycharm创建一个Flask项目: Flask连接数据库需要下载的包: pip install -U flask-cors pip install flask-sqlalchemy Flask 连接和操作Mysql数据库 - 王滚滚啊 - 博客园 (cnblogs.com) sqlAlchemy基本使用 - 简书 (jianshu.com) FlaskVue前后端分…...

【Go】用Go在命令行输出好看的表格
用Go在命令行输出好看的表格前言正文生成Table表头设置插入行表格标题自动标号单元格合并列合并行合并样式设置居中设置数字自动高亮标红完整Demo代码结语前言 最近在写一些运维小工具,比如批量进行ping包的工具,实现不困难,反正就是ping&am…...
怎么处理消息重发的问题?
消息队列在消息传递的过程中,如果出现传递失败的情况,发送方会重试,在重试的过程中,可能会产生重复的消息。 消息重复的情况必然存在 关于传递消息时能够提供的服务质量标准,MQTT协议给出了三种不同的标准࿱…...

JVM 运行时数据区(数据区组成表述,程序计数器,java虚拟机栈,本地方法栈)
JVM 运行时数据区JVM 运行时数据区3.1运行时的数据区组成概述3.1.1程度计数器3.1.2java虚拟机栈3.1.3本地方法栈3.1.4java堆3.1.5方法区3.2程序计数器3.3java虚拟机栈3.4本地方法栈JVM 运行时数据区 堆,方法区(元空间) 主要用来存放数据 是线程共享的. 程序计数器,本地方法栈…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

ubuntu系统文件误删(/lib/x86_64-linux-gnu/libc.so.6)修复方案 [成功解决]
报错信息:libc.so.6: cannot open shared object file: No such file or directory: #ls, ln, sudo...命令都不能用 error while loading shared libraries: libc.so.6: cannot open shared object file: No such file or directory重启后报错信息&…...
智能职业发展系统:AI驱动的职业规划平台技术解析
智能职业发展系统:AI驱动的职业规划平台技术解析 引言:数字时代的职业革命 在当今瞬息万变的就业市场中,传统的职业规划方法已无法满足个人和企业的需求。据统计,全球每年有超过2亿人面临职业转型困境,而企业也因此遭…...
加密通信 + 行为分析:运营商行业安全防御体系重构
在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...

yaml读取写入常见错误 (‘cannot represent an object‘, 117)
错误一:yaml.representer.RepresenterError: (‘cannot represent an object’, 117) 出现这个问题一直没找到原因,后面把yaml.safe_dump直接替换成yaml.dump,确实能保存,但出现乱码: 放弃yaml.dump,又切…...