HashMap 源码中的巧妙小技巧
根据容量计算大于容量的最小的哈希表的大小(table的length),这里的length需要满足length=2^n,也就是我们需要根据容量算出最小的n的值
static final int tableSizeFor(int cap) {int n = cap - 1;n |= n >>> 1;n |= n >>> 2;n |= n >>> 4;n |= n >>> 8;n |= n >>> 16;return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
int n = cap - 1;这里是为了确定在二进制表示的情况下,最高位的1的位置,这里分两种情况来讲
1.cap!=2^n,cap不是2的n次方
这种情况其实减1之后,最高位的1的位置不变例如随便找两个数
69
00000000 00000000 00000000 01000101
69-1
00000000 00000000 00000000 01000100
16196
00000000 00000000 00100000 01000100
16196-1
00000000 00000000 00100000 01000011
4210496
00000000 00100000 00100000 01000000
4210496-1
00000000 00100000 00100000 00111111这几个数字减 1 以后,最高位的1的位置不变2.cap=2^n,cap是2的n次方
这种情况其实减1之后,最高位的1的位置会向右移动一位16
00000000 00000000 00000000 00010000
16-1
00000000 00000000 00000000 00001111
4096
00000000 00000000 00010000 00000000
4096-1
00000000 00000000 00001111 11111111这几个数字减1之后,最高位的1的位置会向右移动一位n |= n >>> 1; 这一步是让从最高位的1开始,往右的前2位变为1
例如:
n = 100000
n >>> 1 就是 10000
n |= n >>> 1 的意思就是 n = n | n >>> 1 = 100000 | 10000 = 110000n |= n >>> 2; 这一步是让从最高位的1开始,往右的前4位变为1
n = 110000
n >>> 2 就是 1100
n |= n >>> 2 的意思就是 n = n | n >>> 2 = 110000 | 1100 = 111100n |= n >>> 4; 这一步是让从最高位的1开始,往右的前8位变为1
n = 111100
n >>> 4 就是 11
n |= n >>> 4 的意思就是 n = n | n >>> 4 = 111100 | 11 = 111111这里再举一个比较大的例子n=10000000000000000000000000000000
n >>> 1 就是 1000000000000000000000000000000
n |= n >>> 1 就是 n = n | n >>> 1 = 10000000000000000000000000000000| 1000000000000000000000000000000= 11000000000000000000000000000000n = 11000000000000000000000000000000
n >>> 2 就是 110000000000000000000000000000
n |= n >>> 2 就是 n = n | n >>> 2 = 11000000000000000000000000000000 | 110000000000000000000000000000 = 11110000000000000000000000000000n = 11110000000000000000000000000000
n >>> 4 就是 1111000000000000000000000000
n |= n >>> 4 就是 n = n | n >>> 4 = 11110000000000000000000000000000 | 1111000000000000000000000000 = 11111111000000000000000000000000n = 11111111000000000000000000000000
n >>> 8 就是 111111110000000000000000
n |= n >>> 8 就是 n = n | n >>> 8 = 11111111000000000000000000000000 | 111111110000000000000000 = 11111111111111110000000000000000n = 11111111111111110000000000000000
n >>> 16 就是 1111111111111111
n |= n >>> 16 就是 n = n | n >>> 16 = 11111111111111110000000000000000 | 1111111111111111 = 11111111111111111111111111111111return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
这里表示如果正常的话返回的值应该是 n + 1
根据我们的经验,如果一个数的二进制表示所有的1都在最右边,那么这个数加 1 以后就是 2^n
计算一个key值的hash值,这里的key的类型是 Object。计算出来的hash值用来参与计算当前键值对在hash表中的位置
static final int hash(Object key) {int h;return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,boolean evict) {Node<K,V>[] tab; Node<K,V> p; int n, i;if ((tab = table) == null || (n = tab.length) == 0)n = (tab = resize()).length;if ((p = tab[i = (n - 1) & hash]) == null)tab[i] = newNode(hash, key, value, null);else {Node<K,V> e; K k;if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
以上是put方法的部分代码,我们可以摘取出其中的关键代码
int n , i; (n = tab.length) == 0 这里执行完,那么 n = tab.length(p = tab[i = (n - 1) & hash]) == null 这里执行完,那么 i = (n - 1) & hash hash的值就是通过上面的hash()方法计算出的值tab[i] = newNode(hash, key, value, null); 这里可以看出 i 是用来寻找新节点的位置的,看来节点在table中的位置为: (tab.length - 1) & hash 根据 tableSizeFor() 的实现可以看出,tab.length为2^k , tab.length - 1的值用二进制表示 低位都为1二进制,高位都是0 那么 (tab.length - 1) & hash 就相当于只取hash的二进制表示的最低的那几位。 如果两个不同的hash值,如果高位不同,低位相同那么算出来的值是相同的,就会增加hash冲突的概率,导致性能受影响。接下来讨论hash()方法的这段代码的巧妙之处
(h = key.hashCode()) ^ (h >>> 16)
h = key.hashCode() 是key的hashCode值
h >>> 16 表示 h 向右移动16位,原来高位的16位移到低位了(h = key.hashCode()) ^ (h >>> 16) 就相当于将 h 的高16位和低16位进行异或运算,
这样h的二进制表示如果高位不同,低位相同,那么最终结果的低位是不同的,
前面put方法分析了寻找键值对在table中的位置时只取hash值的低位来决定键值对的位置,
这样就可以减少hash碰撞的概率
相关文章:
HashMap 源码中的巧妙小技巧
根据容量计算大于容量的最小的哈希表的大小(table的length),这里的length需要满足length2^n,也就是我们需要根据容量算出最小的n的值 static final int tableSizeFor(int cap) {int n cap - 1;n | n >>> 1;n | n >>> 2;n | n >&g…...
极具吸引力的小程序 UI 风格
极具吸引力的小程序 UI 风格...
数据库 | 试卷五试卷六试卷七
1. 主码不相同!相同的话就不能唯一标识非主属性了 2.从关系规范化理论的角度讲,一个只满足 1NF 的关系可能存在的四方面问题 是: 数据冗余度大,插入异常,修改异常,删除异常 3.数据模型的三大要素是什么&…...
网页五子棋对战项目测试(selenium+Junit5)
目录 网页五子棋对战项目介绍 网页五子棋对战测试的思维导图 网页五子棋对战的UI自动化测试 测试一:测试注册界面 测试二:测试登陆界面 测试三:测试游戏大厅界面 测试四:测试游戏房间界面以及观战房间界面 测试五&#…...
stable diffusion 局部重绘 reference-only api 接口调试
webUI api payload 插件生成的接口参数不准确,reference-only 的image不是对象,就是不同字符串字段,直接传,不是套image。 综上,那个插件参数不确定,应直接看插件的源码,看它接受什么参数 错误…...
浪潮信息内存故障预警技术再升级 服务器稳定性再获提升
浪潮信息近日对其内存故障智能预警修复技术进行了全面升级,再次取得技术突破。此次升级后,公司服务器的宕机率实现了80%锐降,再次彰显了浪潮信息在服务器技术领域的卓越能力。 浪潮信息全新升级服务器内存故障智能预警修复技术MUPR (Memory …...
JWT整合Gateway实现鉴权(RSA与公私密钥工具类)
一.业务流程 1.使用RSA生成公钥和私钥。私钥保存在授权中心,公钥保存在网关(gateway)和各个信任微服务中。 2.用户请求登录。 3.授权中心进行校验,通过后使用私钥对JWT进行签名加密。并将JWT返回给用户 4.用户携带JWT访问 5.gateway直接通过公钥解密JWT进…...
vue实现全屏screenfull-封装组件
1. 安装依赖 npm install --save screenfull 2. 引用 import screenfull from "screenfull" 3.封装fullScreen/index: <template><div><el-tooltip v-if"!content" effect"dark" :content"fullscreenTips" placement&…...
【LinkedList与链表】
目录 1,ArrayList的缺陷 2,链表 2.1 链表的概念及结构 2.2 链表的实现 2.2.1 无头单向非循环链表实现 3,LinkedList的模拟实现 3.1 无头双向链表实现 4,LinkedList的使用 4.1 什么是LinkedList 4.2 LinkedList的使用 5…...
为数据安全护航,袋鼠云在数据分类分级上的探索实践
在大数据时代,数据具有多源异构的特性,且价值各异,企业需依据数据的重要性、价值指数等予以区分,以利采取不同的数据保护举措,避免数据泄露。故而,数据分类分级管理属于数据安全保护中极为重要的环节之一。…...
Spring 循环依赖详解
Spring 循环依赖详解 1. 引言 在Spring框架中,依赖注入(Dependency Injection, DI)是其核心功能之一,它通过配置来管理对象的创建和它们之间的依赖关系。然而,在复杂的应用程序中,开发人员有时会遇到循环…...
项目经理真的不能太“拧巴”
前期的项目经理经常是“拧巴”的,就是心里纠结、思路混乱、行动迟缓。对于每天需要面对各种挑战、协调各方资源、确保项目顺利进行的项目经理来说,这种“拧巴”不仅会让自己陷入内耗中,还会让项目出大问题。 项目计划总是改来改去࿰…...
企业如何选择合适的CRM工具?除Salesforce之外的10大主流选择
对比salesforce,其他10款优秀CRM:纷享销客CRM、Zoho CRM、腾讯企点、销售易、企业微信 (WeCom)、Odoo CR、OroCRM、金蝶、用友CRM、EspoCRM 虽然Salesforce以其全面的功能和强大的市场占有率在海外收获了许多客户,但Salesforce在国内市场的接…...
每年1-1.2万人毕业,男女比例约3:1,测绘工程的就业率如何
测绘工程,一个让人闻风丧胆的理科专业,虎扑评分4.2: 干过测绘的,苦不苦只有大家心里知道,带大家来感受一下,兄弟们的精神状态都十分美妙: 测绘专业到底是什么情况? PS.测绘分为本科…...
JimuReport 积木报表 v1.7.6 版本发布,免费的低代码报表
项目介绍 一款免费的数据可视化报表工具,含报表和大屏设计,像搭建积木一样在线设计报表!功能涵盖,数据报表、打印设计、图表报表、大屏设计等! Web 版报表设计器,类似于excel操作风格,通过拖拽完…...
“灵活就业者“超两亿人 游戏开发者如何破局?
随着“灵活就业”者数量突破两亿,我相信“寒气”已经传递到每一位普通人!对于游戏行业的“灵活就业”者,应当如何破局? 首先应该恭喜大家,选择了一个相对“稳健”的行业,无论大环境如何,游戏/软…...
MySQL事务与存储引擎
一、事务的概念 是一种机制、一个操作序列,包含了一组数据库操作命令,并且把所有的命令作为一个整体一起向系统提交或撤销操作请求,即这一组数据库命令要么都执行,要么都不执行是一个不可分割的工作逻辑单元,在数据库…...
总是给数据库表字段设置默认值的好处
1、NOT NULL DEFAULT 的好处 在设计数据库表结构时,将字段设置为不能为空并设置默认值有以下几种好处: 1.1、数据完整性 通过设置字段不能为空,可以确保每条记录都包含必要的数据,从而保证了数据的完整性。例如,在用…...
11.2 Go 常用包介绍
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...
Sqlite3数据库基本使用
一、基本概念 数据:能够输入计算机并能被计算机程序识别和处理的信息集合 数据库:长期存储在计算机内、有组织的、可共享的大量数据的集合 DBMS:位于用户与操作系统之间的一层数据管理软件,用于操纵和管理数据库 二、安装 在线…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
Docker拉取MySQL后数据库连接失败的解决方案
在使用Docker部署MySQL时,拉取并启动容器后,有时可能会遇到数据库连接失败的问题。这种问题可能由多种原因导致,包括配置错误、网络设置问题、权限问题等。本文将分析可能的原因,并提供解决方案。 一、确认MySQL容器的运行状态 …...
