当前位置: 首页 > news >正文

每天五分钟计算机视觉:如何在现有经典的卷积神经网络上进行微调

本文重点

在深度学习领域,卷积神经网络(Convolutional Neural Networks,CNN)因其强大的特征提取和分类能力而广泛应用于图像识别、自然语言处理等多个领域。然而,从头开始训练一个CNN模型往往需要大量的数据和计算资源,且训练时间较长。幸运的是,迁移学习(Transfer Learning)技术为我们提供了一条有效途径:通过微调(Fine-tuning)已训练好的神经网络模型,使其适应新的任务和数据集。

微调的基本原理

微调是指在已训练好的神经网络模型基础上,通过修改部分网络结构和参数,使其适应新的任务和数据集。具体来说,微调包括以下几个步骤:

选择合适的预训练模型:预训练模型通常是在大规模数据集上训练得到的,具有强大的特征提取能力。选择与目标任务相似领域的预训练模型,可以更快地收敛并获得更好的性能。

修改网络结构:根据目标任务的需求,修改预训练模型的网络结构。例如,如果目标任务是分类任务,可以将预训练模型的最后一层全连接层替换为新的分类层,以适应新的类别数。

初始化参数:将预训练模型的参数作为初始值,加载到新的网络结构中。这些参数已经在大规模数据集上进行了优化,可以作为良好的起点。

微调参数:使用新的数据集对模型进行训练,更新部分或全部参数。在微调过程中,通常使用较小的学习率,以避免破坏预训练模型的特征提取能力。

相关文章:

每天五分钟计算机视觉:如何在现有经典的卷积神经网络上进行微调

本文重点 在深度学习领域,卷积神经网络(Convolutional Neural Networks,CNN)因其强大的特征提取和分类能力而广泛应用于图像识别、自然语言处理等多个领域。然而,从头开始训练一个CNN模型往往需要大量的数据和计算资源,且训练时间较长。幸运的是,迁移学习(Transfer Le…...

10个典型的MySQL笔试题和面试题

提供10个典型的MySQL笔试题和面试题作为示例,并给出答案或解释。如果需要更多题目,可以根据这些示例进行扩展或参考相关文档。 1. MySQL是什么? 答案:MySQL是一个关系型数据库管理系统(RDBMS)&#xff0c…...

AI大模型的TTS评测

L-MTL(Large Multi-Task Learning)Models 是一种大规模多任务学习模型,通过结合 Mixture of Experts(MMoE)框架与 Transformer 模型,实现对 TTS(Text-to-Speech)系统中多个评估指标的…...

推荐一款可以下载B站视频和音频的工具

cobalt是一个免费的下载网站,主要是用于载视频和音频。只要你把相应的网址复制下来,然后打开cobalt网站,黏贴网址,选择要下载的格式,就可以下载相应的音频或者视频了。 该网站非常简洁,使用也很简单。目前只…...

中科数安 |-透明加密软件_无感透明加密 - 源头有保障

中科数安的透明加密软件是一款专为保护企业数据安全而设计的高级产品,它采用了无感透明加密技术,确保源头数据的安全可靠。 ——www.weaem.com 以下是该软件的主要特点和功能概述: 无感透明加密: 中科数安的透明加密软件能够在用…...

ui自动化selenium,清新脱俗代码,框架升级讲解

一:简化 1. 新建common 包 新建diver.py 封装浏览器驱动类 from selenium import webdriverclass Driver():"""浏览器驱动类定义 一个【获取浏览器驱动对象driver的方法】。支持多种类型浏览器"""def get_driver(self,browser_typ…...

【吊打面试官系列-Mysql面试题】Myql 中的事务回滚机制概述 ?

大家好,我是锋哥。今天分享关于 【Myql 中的事务回滚机制概述 ?】面试题,希望对大家有帮助; Myql 中的事务回滚机制概述 ? 事务是用户定义的一个数据库操作序列,这些操作要么全做要么全不做,是一个不可分割的工作单位…...

VMware虚拟机三种网络模式设置 - Bridged(桥接模式)

一、前言 由于linux目前很热门,越来越多的人在学习linux,但是买一台服务放家里来学习,实在是很浪费。那么如何解决这个问题?虚拟机软件是很好的选择,常用的虚拟机软件有vmware workstations和virtual box等。 在使用虚…...

关于Panabit在资产平台中类型划分问题

现场同事问了一个问题:Panabit能不能当做CentOS接入? 我第一反应是:Panabit是个什么鬼?为啥要混编接入?后期维护都是事啊。所以,我就想回答:不能! 但是,最好要给出一个…...

【C语言】12.C语言内存函数

文章目录 1.memcpy使用和模拟实现2.memmove使用和模拟实现3.memset函数的使用4.memcmp函数的使用 memcpy:内存拷贝 memmove:内存移动 memset:内存设置 memcmp:内存比较 1.memcpy使用和模拟实现 memcpy:内存拷贝 void…...

Django:如何将多个数据表内容合在一起返回响应

一.概要 Django写后端返回响应时,通常需要返回的可能不是一个数据表的内容,还包括了这个数据表的外键所关联的其他表的一些字段,那该如何做才能把他们放在一起返回响应呢? 二.处理方法 在这里我有三个数据表 第一个是航空订单&…...

棱镜七彩荣获CNNVD两项大奖,专业能力与贡献再获认可!

6月18日,国家信息安全漏洞库(CNNVD)2023年度工作总结暨优秀表彰大会在中国信息安全测评中心成功举办。棱镜七彩凭借在漏洞方面的突出贡献和出色表现,被授予“2023年度优秀技术支撑单位”与“2023年度最佳新秀奖”。 优秀技术支撑单…...

uni-app中使用富文本rich-text个人经验

rich-text是在uni-app一个内置组件,用于高性能地渲染富文本内容。先贴一下官方的属性列表: 先说一下“selectable” 长按选择区域复制,这个我在APP项目中 不起作用,可能像文档说的,只支持“百度小程序”吧。在APP端起作…...

Matlab|基于V图的配电网电动汽车充电站选址定容-可视化

1主要内容 基于粒子群算法的电动汽车充电站和光伏最优选址和定容 关键词:选址定容 电动汽车 充电站位置 仿真平台:MATLAB 主要内容:代码主要做的是一个电动汽车充电站和分布式光伏的选址定容问题,提出了能够计及地理因素和服…...

从零开始! Jupyter Notebook的安装教程

🚀 从零开始! Jupyter Notebook的安装教程 摘要 📄 Jupyter Notebook 是一个广受欢迎的开源工具,特别适合数据科学和机器学习的开发者使用。本文将详细介绍从零开始安装 Jupyter Notebook 的步骤,包括各种操作系统的安装方法&am…...

web前端信息卡:深入探索与实用指南

web前端信息卡:深入探索与实用指南 在数字化时代,web前端信息卡已成为我们日常生活和工作中的重要组成部分。这些小巧而强大的工具,能够在有限的空间内展示丰富的信息,提升用户体验。然而,设计一个出色的web前端信息卡…...

之所以选择天津工业大学,因为它是双一流、报考难度适宜,性价比高!天津工业大学计算机考研考情分析!

天津工业大学(Tiangong University),简称“天工大”,位于天津市,是教育部与天津市共建高校、国家国防科技工业局和天津市共建的天津市重点建设高校、国家“双一流”建设高校、天津市高水平特色大学建设高校、中国研究生…...

WPF三方UI库全局应用MessageBox样式(.NET6版本)

一、问题场景 使用HandyControl简写HC 作为基础UI组件库时,希望系统中所有的MessageBox 样式都使用HC的MessageBox,常规操作如下: 在对应的xxxx.cs 顶部使用using 指定特定类的命名空间。 using MessageBox HandyControl.Controls.Message…...

ABAP-03基础数据类型

基本数据类型 数据类型默认大小(byte)有效大小初始值说明示例C11-65535SPACE文本字符(串)‘Name’N11-65535‘00…0’数字文本‘0123’T66‘000000’时间(HHMMSS)‘123010’D88‘00000000’日期(yyyymmdd)‘20090901’I4-231~232…...

Zabbix监控神通数据库教程

作者:乐维社区(forum.lwops.cn) 乐乐 神通数据库,即神舟通用数据库(ShenTong Database),是我国自主研发的一款关系型数据库管理系统。它在国内市场有一定的应用,尤其是在一些对数据安…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表?1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http…...

3403. 从盒子中找出字典序最大的字符串 I

3403. 从盒子中找出字典序最大的字符串 I 题目链接:3403. 从盒子中找出字典序最大的字符串 I 代码如下: class Solution { public:string answerString(string word, int numFriends) {if (numFriends 1) {return word;}string res;for (int i 0;i &…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...