当前位置: 首页 > news >正文

多模态大模型解读

目录

1. CLIP

2. ALBEF

3. BLIP

4. BLIP2

参考文献


        (2023年)视觉+语言的多模态大模型的目前主流方法是:借助预训练好的LLM和图像编码器,用一个图文特征对齐模块来连接,从而让语言模型理解图像特征并进行深层次的问答推理。

        这样可以利用已有的大量单模态训练数据训练得到的单模态模型,减少对于高质量图文对数据的依赖,并通过特征对齐、指令微调等方式打通两个模态的表征。下图来自其他 up 的概括内容,来自:https://zhuanlan.zhihu.com/p/653902791

        对于CLIP部分公式均参照该链接,仅了解损失函数。

图 基础MLLM的架构整理

1. CLIP

        分别对图像、文本进行特征提取,两部分的backbone可以分别采用Resnet系列模型/VIT系列模型、BERT模型。特征提取后,直接相乘计算余弦相似度,然后采用对比损失(info-nce-loss)。

训练损失

  • 交叉熵代价损失(cross entropy):基础有监督学习分类损失函数。

图 n个类别多分类的交叉熵代价函数

  • NCE(noise contrastive estimation):相比于交叉熵损失,这里将多问题转化为二分类问题,即正样本和噪声样本,目标学习正样本和噪声样本之间的差异。

图 噪声对比

  • info-NCE:NCE的变体,将噪声样本按多类别看待。存在一个temp的温度系数。

图 info-NCE loss

2. ALBEF

        动机:该项工作之前的视觉预训练模型一般采用Object Detector的方式,这种Detector能够提取图像上的目标或边界信息。然而这种训练方式有如下几点限制:

  • 图像特征和文本编码token分别处于各子的特征空间,这使得多模态关联性挖掘存在巨大挑战;
  • 这种训练方式会产生额外的解释开销和计算开销;
  • 对于物体目标含量低的样本,模型性能受限于Detector的检测精度;
  • 图像文本样本数据一般来源于网络,具有严重的噪声影响,会导致模型性能降级。

        ALBEF模型架构:如图所示,ALBEF模型架构分为image encoder 、text encoder 和多模态编码器,其中左半部分类似Transformer,text encoder将12层分为两部分,前6层作为text encoder,后6层作为视觉特征和文本特征的融合。由于视觉和文本的编码都包含[CLS]标签,这种标签因自注意力机制的影响被认为包含全局信息,所以可以将视觉和文本的全局信息进行 Image-Text Contrastive Loss。

图 ALBEF架构图

        如图ITM部分,该部分称为图像文本匹配(Image-Text matching),该部分利用的负样本采用 hard negatives 的方式进行生成,即通过ITC(iamge-text Contrastive)计算出的次分类结果,该结果能够作为模型难以理解的样本,进而计算损失。

        除此之外,由于动机中描述的网络图文样本对的噪声影响,ALBEF设计一个Momentum Model(动量模型)解决上述问题。简要描述该组件的作用,即类似知识蒸馏方法,拷贝出原始模型的动量版本,通过动量模型对原始模型规约,加深原始模型和动量模型间的图文对匹配程度,进而消除原始样本数据中的噪声干扰。

3. BLIP

        动机:从模型的角度,当前预训练模型的任务涵盖范围受限。例如,基于Encoder的模型无法做生成任务,而基于Encoder-Decoder的模型无法做检索任务,不能更充分的理解任务信息。从数据的角度,网络图文对具有严重的数据噪声。

        BLIP模型架构:BLIP全称Bootstrapped Language-Image Pre-training,该模型包括三个下游任务:图像文本对比学习、图像文本匹配和语言建模(LM,该任务类似GPT,给定段落前一段话,预测后一段;而不是BERT那种完型填空的方式)。

图 BLIT模型架构

  • Bootstrapped机制:采用一种迭代的、自我改进的学习过程来提升模型性能,该机制有助于提高模型在跨模态任务中的对齐和理解能力。(1)初始模型训练阶段:首先使用大量的单模态数据(如图像/文本)对文本编码器和图像编码器进行预训练(如图中的 Image Encoder 和 Text Encoder)。然后利用多模态数据,即图文对数据,对初始模型进行训练;(2)迭代更新阶段:采用Captioning and Filtering的方式,从网页噪声图像文本对中学习,训练BLIP。
  • image-text contrastive(图像文本对比):和ALBEF类似,利用[CLS]信息进行对比学习。
  • Image-grounded Text Encoder(图像文本匹配编码器):采用一种 Cross Attention 模块,将图像信息融入文本编码过程中,增强文本的上下文表示,进而理解图像的相关描述。
  • Image-grounded Text Decoder(图像关联文本解码器):将原来的 Bi Self-Attention 替换为 Causal Self-Attention(用于预测下一个token),该解码器用于文本生成或多模态推理任务。
  1. soft lables:是指标签值在[0,1]之间的概率值,而不是离散的0或1,反映样本属于某一个类的置信度。有助于平滑标签分布,提高模型的泛化能力,减少过拟合。
  2. Hard Negative Mining Strategy:在训练过程中,专门选择那些模型难以区分的负样本,以增强模型的判别能力。

如何消除网络样本噪声的影响:BLIP采用 Filter-Captioner 的方式,如图所示,通过生成+过滤的方式生成更匹配图像的Caption,进而完善样本集。具体而言,对于给定的训练集
$D$,包含网络文本 T_w、人工正确标注文本 T_h,由于前文有 ITC、ITM 和 LM 损失,因此在部分利用这些指标训练 Filter(grounded Encoder)和 Captioner(grounded Decoder),Captioner会生成文本数据 T_s,将 T_w 和 T_s 交由 Filter 微调更加匹配图像的文本信息,最终获得信息匹配程度更紧密的样本集。

图 Filter-Captioner机制

4. BLIP2

动机:回顾之前的研究,无论是视觉预训练模型还是语言预训练模型,其规模都是庞大的,这种模型架构会产生巨额开销。

BLIP2架构:BLIP2全称Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models,视图将视觉预训练模型和语言预训练模型参数均进行冻结。然而,这会导致视觉特征和文本特征都处于各自的特征空间,存在巨大的 modality gap。因此BLIP2中采用 Q-Former(Query Transformer) 的一种轻量级Transformer技术,该技术用于弥补视觉和语言两种模态的 modality gap,选取最匹配的视觉特征给后续LLM生成文本。

图 BLIP2的模型架构

        Q-Former是一个可学习的组件,学习的参数包括若干queries,这些queries最终从 image encoder中提取固定数量的视觉特征,学习与文本更匹配的视觉特征。

        queries间的彼此交互通过共享自注意力层,和冻结的图像特征交互使用的跨模态注意力机制层,然后queries也能通过共享自注意力层与文本特征进行交互。整个Q-Former由Image Transformer和Text Transformer两个子模块构成,它们共享相同自注意力层。

  • Image Transformer:通过和image encoder交互来提取视觉特征,输入是一系列(文中用的32个*768长度)可学习的 Queries,这些Query通过自注意力层相互交互,并通过交叉注意力层与冻结的图像特征交互,还可以通过共享的自注意力层与文本进行交互;输出的query尺寸是32*768,远小于冻结的图像特征257*1024(ViT-L/14)。
  • Text Transformer:既作为文本编码器也作为文本解码器,它的自注意力层与Image Transformer共享,根据预训练任务,用不同的self-attention masks来控制Query和文本的交互方式。

参考文献

多模态大模型 CLIP, BLIP, BLIP2, LLaVA, miniGPT4, InstructBLIP 系列解读

BLIP2的前世与今生

ALBEF原文

BLIP原文

BLIP2原文

相关文章:

多模态大模型解读

目录 1. CLIP 2. ALBEF 3. BLIP 4. BLIP2 参考文献 (2023年)视觉语言的多模态大模型的目前主流方法是:借助预训练好的LLM和图像编码器,用一个图文特征对齐模块来连接,从而让语言模型理解图像特征并进行深层次的问…...

React是什么?

theme: condensed-night-purple highlight: atelier-cave-light React是什么? 官方的解释是:A JavaScript library for building user interfaces用于构建用户界面的 JavaScript 库 那为什么要选择用React呢? 原生的HTML、CSS、JavaScrip的…...

创新入门 | 病毒循环Viral Loop是什么?为何能实现指数增长

今天,很多高速增长的成功创业公司都在采用”病毒循环“的策略去快速传播、并扩大用户基础。究竟什么是“病毒循环”?初创公司的创始人为何需要重视这个策略?这篇文章中将会一一解答与病毒循环有关的各种问题。 一、什么是病毒循环&#xff08…...

鸿蒙HarmonyOS实战:渲染控制、路由案例

条件渲染 简单来说,就是动态控制组件的显示与隐藏,类似于vue中的v-if 但是这里写法就是用if、else、else if看起来更像是原生的感觉 效果 循环渲染 我们实际开发中,数据一般是后端返回来的对象格式,对此我们需要进行遍历&#…...

【Linux】进程控制2——进程等待(waitwaitpid)

1. 进程等待必要性 我们知道,子进程退出,父进程如果不管不顾,就可能造成"僵尸进程”的问题,进而造成内存泄漏。另外,进程一旦变成僵尸状态,那就刀枪不入,“杀人不眨眼”的kill -9 也无能为…...

SpringBoot 统计接口调用耗时的多种方式

在实际开发中,了解项目中接口的响应时间是必不可少的事情。SpringBoot 项目支持监听接口的功能也不止一个,接下来我们分别以 AOP、ApplicationListener、Tomcat 三个方面去实现三种不同的监听接口响应时间的操作。 AOP 首先我们在项目中创建一个类 &am…...

Linux系统安装Ruby语言

Ruby是一种面向对象的脚本语言,由日本的计算机科学家松本行弘设计并开发,Ruby的设计哲学强调程序员的幸福感,致力于简化编程的复杂性,并提供一种既强大又易于使用的工具。其语法简洁优雅,易于阅读和书写,使…...

网络安全练气篇——OWASP TOP 10

1、什么是OWASP? OWASP(开放式Web应用程序安全项目)是一个开放的社区,由非营利组织 OWASP基金会支持的项目。对所有致力于改进应用程序安全的人士开放,旨在提高对应用程序安全性的认识。 其最具权威的就是“10项最严重…...

python实现进度条的方法和实现代码

在Python中,有多种方式可以实现进度条。这里,我将介绍七种常见的方法:使用tqdm(这是一个外部库,非常流行且易于使用)、rich、click、progressbar2等库以及纯Python的print函数与time库来模拟进度条。 目录…...

被拷打已老实!面试官问我 #{} 和 ${} 的区别是什么?

引言:在使用 MyBatis 进行数据库操作时,#{} 和 ${} 的区别是面试中常见的问题,对理解如何在 MyBatis 中安全有效地处理 SQL 语句至关重要。正确使用这两种占位符不仅影响应用的安全性,还涉及到性能优化。 题目 被拷打已老实&…...

C# —— while循环语句

作用 让顺序执行的代码 可以停下来 循环执行某一代码块 // 条件分支语句: 让代码产生分支 进行执行 // 循环语句 : 让代码可以重复执行 语法 while循环 while (bool值) { 循环体(条件满足时执行的代码块) …...

力扣第205题“同构字符串”

在本篇文章中,我们将详细解读力扣第205题“同构字符串”。通过学习本篇文章,读者将掌握如何使用哈希表来解决这一问题,并了解相关的复杂度分析和模拟面试问答。每种方法都将配以详细的解释,以便于理解。 问题描述 力扣第205题“…...

探索RESTful API开发,构建可扩展的Web服务

介绍 当我们浏览网页、使用手机应用或与各种互联网服务交互时,我们经常听到一个术语:“RESTful API”。它听起来很高深,但实际上,它是构建现代网络应用程序所不可或缺的基础。 什么是RESTful API? 让我们将RESTful …...

苹果安卓网页的H5封装成App的应用和原生开发的应用有什么不一样?

H5封装类成App的应用和原生应用有什么不一样?——一对比谈优缺点 1. 开发速度和复用性 H5封装的App优势:一次编写,多平台运行。你只需要使用一种语言编写代码,就可以发布到不同的平台,降低开发成本。 原生应用优势&…...

IO流2.

字符流-->字符流的底层其实就是字节流 public class Stream {public static void main(String[] args) throws IOException {//1.创建对象并关联本地文件FileReader frnew FileReader("abc\\a.txt");//2.读取资源read()int ch;while((chfr.read())!-1){System.out…...

详解MySQL中的PERCENT_RANK函数

目录 1. 引入1. 基本使用2:分组使用3:处理重复值4. 使用优势4.1 手动计算百分等级4.2 使用 PERCENT_RANK 的优势4.3 使用 PERCENT_RANK 5. 总结 在 MySQL 中,PERCENT_RANK 函数用于计算一个值在其分组中的百分等级。 它的返回值范围是从 0 …...

宏任务与微任务

一、宏任务 1、概念 指消息队列中等地被主线程执行的事件 2、种类 script主代码块、setTimeout 、setInterval 、nodejs的setImmediate 、MessageChannel(react的fiber用到)、postMessage、网络I/O、文件I/O、用户交互的回调等事件、UI渲染事件&#x…...

昇思大模型学习·第一天

mindspore快速入门回顾 导入mindspore包 处理数据集 下载mnist数据集进行数据集预处理 MnistDataset()方法train_dataset.get_col_names() 打印列名信息使用create_tuple_iterator 或create_dict_iterator对数据集进行迭代访问 网络构建 mindspore.nn: 构建所有网络的基类用…...

python调用chatgpt

简单写了一下关于文本生成接口的调用,其余更多的调用方法可在官网查看 import os from dotenv import load_dotenv, find_dotenv from openai import OpenAI import httpxdef gpt_config():# 为了安全起见,将key写到当前项目根目录下的.env文件中# find…...

YOLOV8 目标检测:训练自定义数据集

1、下载 yolov8项目:ultralytics/ultralytics:新增 - PyTorch 中的 YOLOv8 🚀 > ONNX > OpenVINO > CoreML > TFLite --- ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreM…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版​分享

平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...

土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等

🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

大数据学习(132)-HIve数据分析

​​​​🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言&#x1f4…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

JVM 内存结构 详解

内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: ​ 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

Java编程之桥接模式

定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...