如何配置node.js环境
文章目录
- step1. 下载node.js安装包
- step2. 创建node_global, node_cache文件夹
- step3.配置node环境变量
- step3. cmd窗口检查安装的node和npm版本号
- step4. 设置缓存路径\全局安装路径\下载镜像
- step5. 测试配置的nodejs环境
step1. 下载node.js安装包
下载地址:node.js
我的电脑时windows系统、64位,所有选择画框的版本下载

然后将压缩包解压,检查自己下载的文件是否齐全(千万不要小看这一步,我最开始就是在nodejs的中文网上下载了一个压缩包然后一通配置,却发现无论如何都无法配置成功,后来发现就是在这最开始下载的文件就有问题,里面没有npm指令!虽然这是个小概率事件,但是检查一下可以防止后面花大力气找这个问题)

把解压得到的文件夹中的所有内容拷到自己习惯用的盘(我是在自己的E盘中创建了一个nodejs文件夹,然后把内容拷在这个文件夹中)

step2. 创建node_global, node_cache文件夹
在nodejs路径下创建node_global,node_cache文件夹

在node_global路径下创建node_modules文件夹

step3.配置node环境变量
- “我的电脑”->“属性”->“高级系统设置”->“环境变量”



- 先在用户变量的Path中添加以下路径,“E:\nodejs”、“E:\nodejs\node_global”

- 然后在环境变量中新建NODE_PATH变量、路径为"E:\nodejs\node_global\node_modules",还要在Path中添加路径"E:\nodejs"

step3. cmd窗口检查安装的node和npm版本号
在cmd窗口,输入node -v 和npm -v,有相应的版本号出来证明环境变量配置成功

上图中有个细节,我用npm-v检查所安装的npm版本号时发现其版本为7.19.1,而我想要的版本为8.5.5(为了与对应的taro联合起来),于是用npm install -g npm@8.5.5指令安装了一个新版本的npm
step4. 设置缓存路径\全局安装路径\下载镜像
- 在命令行窗口输入 npm config set cache “E:\nodejs\node_cache” 来设置缓存路径
- 在命令行窗口输入 npm config set prefix “E:\nodejs\node_global” 来设置全局安装路径
- 在命令行窗口输入npm config set registry https://registry.npmmirror.com 来配置下载镜像(会让下载速度变快)

step5. 测试配置的nodejs环境
在命令行窗口使用npm install express -g即可

可看到该文件夹下有express目录生成

相关文章:
如何配置node.js环境
文章目录 step1. 下载node.js安装包step2. 创建node_global, node_cache文件夹step3.配置node环境变量step3. cmd窗口检查安装的node和npm版本号step4. 设置缓存路径\全局安装路径\下载镜像step5. 测试配置的nodejs环境 step1. 下载node.js安装包 下载地址:node.js…...
python tensorflow 各种神经元
感知机神经元(Perceptron Neuron): 最基本的人工神经元模型,用于线性分类任务。 import numpy as npclass Perceptron:def __init__(self, input_size, learning_rate0.01, epochs1000):self.weights np.zeros(input_size 1) #…...
Gone框架介绍27 - 再讲 Goner 和 依赖注入
gone是可以高效开发Web服务的Golang依赖注入框架 github地址:https://github.com/gone-io/gone 文档地址:https://goner.fun/zh/ 文章目录 Goner 和 依赖注入Goner的定义依赖标记Goners 注册Priest函数 Goner 和 依赖注入 Gone 作为一个依赖注入框架&am…...
【Python/Pytorch 】-- 滑动窗口算法
文章目录 文章目录 00 写在前面01 基于Python版本的滑动窗口代码02 算法效果 00 写在前面 写这个算法原因是:训练了一个时序网络,该网络模型的时序维度为32,而测试数据的时序维度为90。因此需要采用滑动窗口的方法,生成一系列32…...
Clickhouse集群create drop database可删除集群数据库或只删除本地数据库
集群环境下,在任意一个节点创建数据库,如果加上了ON CLUSTER clustername,则在集群环境的所有节点上都创建了该数据库,并在集群环境的所有节点上都创建了该数据库对应的目录,且数据库的metadata_path对应的目录路径在所…...
【docker】adoptopenjdk/openjdk8-openj9:alpine-slim了解
adoptopenjdk/openjdk8-openj9:alpine-slim 是一个 Docker 镜像的标签,它指的是一个特定的软件包,用于在容器化环境中运行 Java 应用程序。 镜像相关的网站和资源: AdoptOpenJDK 官方网站 - AdoptOpenJDK 这是 AdoptOpenJDK 项目的官方网站&…...
Vscode interaction window
python 代码关联到 jupyter 模式 在代码前添加: # %%print("hellow wolrd!") 参考文档链接: https://code.visualstudio.com/docs/python/jupyter-support-py...
后端数据null前端统一显示成空
handleNullValues方法在封装请求接口返回数据时统一处理 // null 转 function handleNullValues(data) {// 使用递归处理多层嵌套的对象或数组function processItem(item) {if (Array.isArray(item)) {return item.map(processItem);} else if (typeof item object &&…...
【设计模式深度剖析】【9】【行为型】【访问者模式】| 以博物馆的导览员为例加深理解
👈️上一篇:备忘录模式 | 下一篇:状态模式👉️ 设计模式-专栏👈️ 文章目录 访问者模式定义英文原话直译如何理解呢? 访问者模式的角色类图代码示例 访问者模式的应用优点缺点使用场景 示例解析:博物馆的导览员代码示例 访问…...
Salesforce‘s 爱因斯坦机器人助手引领工业聊天机器人时代
CRM的对话式人工智能助手,根据公司数据提供可靠的人工智能响应及日本工业聊天机器人现状 【前言】 爱因斯坦助手(Einstein Copilot)提供可靠的响应,因为它基于公司独特的数据和元数据,使其能够深入了解公司的业务和客…...
Day7—zookeeper基本操作
ZooKeeper介绍 ZooKeeper(动物园管理员)是一个分布式的、开源的分布式应用程序的协调服务框架,简称zk。ZooKeeper是Apache Hadoop 项目下的一个子项目,是一个树形目录服务。 ZooKeeper的主要功能 配置管理 分布式锁 集群管理…...
计算机组成原理---Cache的基本工作原理习题
对应知识点: Cache的基本原理 1.某存储系统中,主存容量是Cache容量的4096倍,Cache 被分为 64 个块,当主存地址和Cache地址采用直接映射方式时,地址映射表的大小应为()(假设不考虑一致维护和替…...
springboot项目中切数据库(mysql-> pg)带来的适配问题:typeHandler
一、数据表中有一张表,名为role_permission,DDL如下: CREATE TABLE "public"."role_permission" ( "role_id" varchar(64) COLLATE "pg_catalog"."default" NOT NULL, "permiss…...
从零开始的<vue2项目脚手架>搭建:vite+vue2+eslint
前言 为了写 demo 或者研究某些问题,我经常需要新建空项目。每次搭建项目都要从头配置,很麻烦。所以我决定自己搭建一个项目初始化的脚手架(取名为 lily-cli)。 脚手架(scaffolding):创建项目时…...
Hadoop升级失败,File system image contains an old layout version -64
原始版本 Hadoop 3.1.3 升级版本 Hadoop 3.3.3 报错内容如下 datasophon 部署Hadoop版本 查看Hadoop格式化版本 which hadoop-daemon.sh/bigdata/app/hadoop-3.1.3/sbin/hadoop-daemon.sh删除原来的旧版本 rm -rf /bigdata/app/hadoop-3.1.3查看环境变量 env|grep HADOOPHAD…...
[机器学习算法]决策树
1. 理解决策树的基本概念 决策树是一种监督学习算法,可以用于分类和回归任务。决策树通过一系列规则将数据划分为不同的类别或值。树的每个节点表示一个特征,节点之间的分支表示特征的可能取值,叶节点表示分类或回归结果。 2. 决策树的构建…...
springboot应用cpu飙升的原因排除
1、通过top或者jps命令查到是那个java进程, top可以看全局那个进程耗cpu,而jps则默认是java最耗cpu的,比如找到进程是196 1.1 top (推荐)或者jps命令均可 2、根据第一步获取的进程号,查询进程里那个线程最占用cpu,发…...
反激开关电源EMI电路选型及计算
EMI :开关电源对电网或者其他电子产品的干扰 EMI :传导与辐射 共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相 同(绕制反向)。 这样,当电路中的正常电流(差模&…...
vue3前端对接后端的图片验证码
vue3前端对接后端的图片验证码 <template> <image :src"captchaUrl" alt"图片验证码" click"refreshCaptcha"></image> </template><script setup>import {ref} from "vue";import {useCounterStore} …...
【Unity】RPG2D龙城纷争(四)要诀、要诀数据集
更新日期:2024年6月20日。 项目源码:第五章发布(正式开始游戏逻辑的章节) 索引 简介要诀数据集(AbilityDataSet)一、定义要诀数据集类二、要诀属性1.要诀类型2.攻击距离3.基础命中、暴击率4.基础属性加成5.…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...
基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
群晖NAS如何在虚拟机创建飞牛NAS
套件中心下载安装Virtual Machine Manager 创建虚拟机 配置虚拟机 飞牛官网下载 https://iso.liveupdate.fnnas.com/x86_64/trim/fnos-0.9.2-863.iso 群晖NAS如何在虚拟机创建飞牛NAS - 个人信息分享...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版
1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...
拟合问题处理
在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...
python读取SQLite表个并生成pdf文件
代码用于创建含50列的SQLite数据库并插入500行随机浮点数据,随后读取数据,通过ReportLab生成横向PDF表格,包含格式化(两位小数)及表头、网格线等美观样式。 # 导入所需库 import sqlite3 # 用于操作…...
