当前位置: 首页 > news >正文

跑通并使用Yolo v5的源代码并进行训练—目标检测

跑通并使用Yolo v5的源代码并进行训练

摘要:yolo作为目标检测计算机视觉领域的核心网络模型,虽然到24年已经出到了v10的版本,但也很有必要对之前的核心版本v5版本进行进一步的学习。在学习yolo v5的时候因为缺少论文所以要从源代码入手来体验yolo v5之一经典的网络模型。

Git拉取代码

首先给出github上的官方仓库。我们使用第7版的yolo v5来进行测试和使用。

https://github.com/ultralytics/yolov5

在这里插入图片描述

创建yolo v5的虚拟环境

本次使用Anaconda的图形管理工具来创建yolo v5的虚拟环境,使用的python版本选择python 3.11的版本

官方要求是:python version >= python 3.8

在这里插入图片描述

git clone拉取项目并使用pycharm打开

在指定文件夹下面使用:来拉取项目

git clone https://github.com/ultralytics/yolov5.git
在这里插入图片描述

之后使用pycharm将项目进行导入,并观察项目的结构。当然建议可以直接在pycharm中通过git模块将项目加载进ide中进行学习。

在这里插入图片描述
选择虚拟环境将改项目的虚拟环境选择为刚刚创建的yolo v5的环境信息。在虚拟环境的基础上通过pip安装需要使用的requirements.txt文件夹下面所定义的环境配置。

如果一些环境因为CUDA的版本信息安装不上,则需要在终端自己通过pip命令安装一些高版本的依赖库进行测试使用。

# YOLOv5 requirements
# Usage: pip install -r requirements.txt# Base ------------------------------------------------------------------------
gitpython>=3.1.30
matplotlib>=3.3
numpy>=1.23.5
opencv-python>=4.1.1
pillow>=10.3.0
psutil  # system resources
PyYAML>=5.3.1
requests>=2.32.0
scipy>=1.4.1
thop>=0.1.1  # FLOPs computation
torch>=1.8.0  # see https://pytorch.org/get-started/locally (recommended)
torchvision>=0.9.0
tqdm>=4.64.0
ultralytics>=8.2.34  # https://ultralytics.com
# protobuf<=3.20.1  # https://github.com/ultralytics/yolov5/issues/8012# Logging ---------------------------------------------------------------------
# tensorboard>=2.4.1
# clearml>=1.2.0
# comet# Plotting --------------------------------------------------------------------
pandas>=1.1.4
seaborn>=0.11.0# Export ----------------------------------------------------------------------
# coremltools>=6.0  # CoreML export
# onnx>=1.10.0  # ONNX export
# onnx-simplifier>=0.4.1  # ONNX simplifier
# nvidia-pyindex  # TensorRT export
# nvidia-tensorrt  # TensorRT export
# scikit-learn<=1.1.2  # CoreML quantization
# tensorflow>=2.4.0,<=2.13.1  # TF exports (-cpu, -aarch64, -macos)
# tensorflowjs>=3.9.0  # TF.js export
# openvino-dev>=2023.0  # OpenVINO export# Deploy ----------------------------------------------------------------------
setuptools>=65.5.1 # Snyk vulnerability fix
# tritonclient[all]~=2.24.0# Extras ----------------------------------------------------------------------
# ipython  # interactive notebook
# mss  # screenshots
# albumentations>=1.0.3
# pycocotools>=2.0.6  # COCO mAP

在这里插入图片描述

通过pip安装环境

官方的md文件中给出了需要在终端中切换的目录,和安装的命令如下所示:

cd yolov5
pip install -r requirements.txt # install

并给出了预训练好的模型信息。

预训练模型

模型尺寸
(像素)
mAPval
50-95
mAPval
50
推理速度
CPU b1
(ms)
推理速度
V100 b1
(ms)
速度
V100 b32
(ms)
参数量
(M)
FLOPs
@640 (B)
YOLOv5n64028.045.7456.30.61.94.5
YOLOv5s64037.456.8986.40.97.216.5
YOLOv5m64045.464.12248.21.721.249.0
YOLOv5l64049.067.343010.12.746.5109.1
YOLOv5x64050.768.976612.14.886.7205.7
YOLOv5n6128036.054.41538.12.13.24.6
YOLOv5s6128044.863.73858.23.612.616.8
YOLOv5m6128051.369.388711.16.835.750.0
YOLOv5l6128053.771.3178415.810.576.8111.4
YOLOv5x6
+[TTA]
1280
1536
55.0
55.8
72.7
72.7
3136
-
26.2
-
19.4
-
140.7
-
209.8
-

在进行预测和测试时可以选择上面的预训练模型进行下载,下载的位置如图所示,在执行时可以自动下载若下载失败,在自己在指定的位置下载这些模型。

在这里插入图片描述

主要要有c++的环境才能安装成果,可以先看一下自己的windows电脑上是否有c++的环境,linux上还没测试过,可以之后使用colab进行一下测试。

在这里插入图片描述

根据文档提示启动项目测试预训练模型

官方提供了两张用来进行目标检测的图片,执行detect.py文件并修改里面main函数中包括的参数信息,加载预训练模型进行预测。

在这里插入图片描述

if __name__ == "__main__":opt = parse_opt()main(opt)

在parse_opt()函数中修改指定的参数信息。

ef parse_opt():"""Parses command-line arguments for YOLOv5 detection, setting inference options and model configurations."""parser = argparse.ArgumentParser()parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5s.pt", help="model path or triton URL")parser.add_argument("--source", type=str, default=ROOT / "data/images", help="file/dir/URL/glob/screen/0(webcam)")parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="(optional) dataset.yaml path")parser.add_argument("--imgsz", "--img", "--img-size", nargs="+", type=int, default=[640], help="inference size h,w")parser.add_argument("--conf-thres", type=float, default=0.25, help="confidence threshold")parser.add_argument("--iou-thres", type=float, default=0.45, help="NMS IoU threshold")parser.add_argument("--max-det", type=int, default=1000, help="maximum detections per image")parser.add_argument("--device", default="", help="cuda device, i.e. 0 or 0,1,2,3 or cpu")parser.add_argument("--view-img", action="store_true", help="show results")parser.add_argument("--save-txt", action="store_true", help="save results to *.txt")parser.add_argument("--save-csv", action="store_true", help="save results in CSV format")parser.add_argument("--save-conf", action="store_true", help="save confidences in --save-txt labels")parser.add_argument("--save-crop", action="store_true", help="save cropped prediction boxes")parser.add_argument("--nosave", action="store_true", help="do not save images/videos")parser.add_argument("--classes", nargs="+", type=int, help="filter by class: --classes 0, or --classes 0 2 3")parser.add_argument("--agnostic-nms", action="store_true", help="class-agnostic NMS")parser.add_argument("--augment", action="store_true", help="augmented inference")parser.add_argument("--visualize", action="store_true", help="visualize features")parser.add_argument("--update", action="store_true", help="update all models")parser.add_argument("--project", default=ROOT / "runs/detect", help="save results to project/name")parser.add_argument("--name", default="exp", help="save results to project/name")parser.add_argument("--exist-ok", action="store_true", help="existing project/name ok, do not increment")parser.add_argument("--line-thickness", default=3, type=int, help="bounding box thickness (pixels)")parser.add_argument("--hide-labels", default=False, action="store_true", help="hide labels")parser.add_argument("--hide-conf", default=False, action="store_true", help="hide confidences")parser.add_argument("--half", action="store_true", help="use FP16 half-precision inference")parser.add_argument("--dnn", action="store_true", help="use OpenCV DNN for ONNX inference")parser.add_argument("--vid-stride", type=int, default=1, help="video frame-rate stride")opt = parser.parse_args()opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expandprint_args(vars(opt))return opt

在简单进行使用的过程中,只说明前两个参数即可满足效果的显示。

  1. parser.add_argument(“–weights”, nargs=“+”, type=str, default=ROOT / “yolov5s.pt”, help=“model path or triton URL”)

加载yolov5s.pt模型作为预训练权重。

  1. parser.add_argument(“–source”, type=str, default=ROOT / “data/images”, help=“file/dir/URL/glob/screen/0(webcam)”)

需要检测的图片存放路径信息。

在配置好后执行该文件产生对应的效果来进行测试。

报错信息解决

在这里插入图片描述
额:不出意外第一次跑代码总会产生一定的错误信息。

AttributeError: partially initialized module ‘charset_normalizer’ has no attribute ‘md__mypyc’ (most likely due to a circular import)

参考解决方式:pip install --force-reinstall charset-normalizer==3.1.0

在这里插入图片描述

之后再一次执行信息,就执行成功开始下载yolov5s.pt的预训练模型信息,进行一个检测检测操作。并将结果保存到指定的位置处。

在这里插入图片描述

在run文件下面生成第一次检测的图片结果信息。

在这里插入图片描述

切换预训练模型在执行一次

例如切换使用YOLOv5m 模型进行一次测试过程,观察该模型与之前的模型在生成的效果上有何不同之处。

我们这次使用命令行的方式来进行执行观察效果

修改对应的预训练参数yolov5m.pt

 parser.add_argument("--weights", nargs="+", type=str, default=ROOT / "yolov5m.pt", help="model path or triton URL")

在这里插入图片描述
明显可以发现该模型的大小明显更大下载的速度也更快。

模型下载的位置就保持在根目录处,可以通过程序直接进行加载。

在这里插入图片描述

执行成功之后发现在bounding box对应的置信度上的数值存在明显的不同之处。同时会保存在不同的文件中。

在这里插入图片描述

街道视频的目标检测

在官方文档和代码注释出提到了可以使用.mp4文件并将视频转化为帧进行检测。

$ python detect.py --weights yolov5s.pt --source 0 # webcam
img.jpg # image
vid.mp4 # video
screen # screenshot
path/ # directory
list.txt # list of images
list.streams # list of streams
‘path/*.jpg’ # glob
‘https://youtu.be/LNwODJXcvt4’ # YouTube
‘rtsp://example.com/media.mp4’ # RTSP, RTMP, HTTP stream

其中 parser.add_argument(“–view-img”, action=“store_true”, help=“show results”)

–view-img参数可以显示检测的效果,在执行视频文件的同时我们使用到这个参数就可以动态观察视频的检测效果了。

  1. 下载一个街道视频作为待检测的素材。

在这里插入图片描述

  1. 修改第二个参数信息在程序中读入视频并进行检测。
parser.add_argument("--source", type=str, default=ROOT / "data/video/street.mp4", help="file/dir/URL/glob/screen/0(webcam)")
  1. 设置–view-img参数观看检测视频的实时效果。(python detect.py --view-img)

在这里插入图片描述
选择的是一个较小的视频共可以分为211帧来检测实时的检测。

street

使用coco数据集结合GPU训练自己的模型

我们结合迁移学习和代码中使用到的微调等相关技术。对自己的模型进行训练,项目中包括了一些yaml配置文件。

方便快速的训练,我选择使用其中的coco128这个数据集。共80个类别信息
在训练的过程中同样需要先下载coco128数据集对应的128张图片,然后在进行模型的训练。

初学者水平有限调参默认忽略。其中yaml文件中给出了下载地址:
download: https://ultralytics.com/assets/coco128.zip

修改参数信息,之后进行训练,训练完成后得到自己的GPU训练之后的模型信息。

add_argument("--weights", type=str, default=ROOT / "yolov5m.pt", help="initial weights path")parser.add_argument("--cfg", type=str, default="", help="model.yaml path")parser.add_argument("--data", type=str, default=ROOT / "data/coco128.yaml", help="dataset.yaml path")
  1. 下载数据集读入参数信息
    在这里插入图片描述

  2. 结合训练集和验证集进行模型的训练。

在这里插入图片描述

在这里插入图片描述
下载的是cpu版本的pytorch训练较慢,重新用pip下载GPU版本的pytorch重新来进行训练

pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

建议还是用conda装

换源下载加快速度下载GPU版本的torch
在这里插入图片描述
下载完成后GPU可以则重新进行训练。(GPU安装成功后重新训练)

在这里插入图片描述
注意的是conda虚拟环境的pytorch cuda版本一定用conda安装

在这里插入图片描述
成功用gpu进行训练了当100个批次都跑完后即可看生成的训练的目录结构

将最后的结果保存在第三次训练的地方。
在这里插入图片描述

使用自己训练的模型来进行视频的检测

在检测文件处修改指定的模型加载位置:我们自己训练的第三个模型的位置。runs/train/exp3/weights/best.pt

--weights", nargs="+", type=str, default=ROOT / "runs/train/exp3/weights/best.pt", help="model path or triton URL")

效果基本上和预训练模型的效果近似相同。

在这里插入图片描述

相关文章:

跑通并使用Yolo v5的源代码并进行训练—目标检测

跑通并使用Yolo v5的源代码并进行训练 摘要&#xff1a;yolo作为目标检测计算机视觉领域的核心网络模型&#xff0c;虽然到24年已经出到了v10的版本&#xff0c;但也很有必要对之前的核心版本v5版本进行进一步的学习。在学习yolo v5的时候因为缺少论文所以要从源代码入手来体验…...

需求虽小但是问题很多,浅谈JavaScript导出excel文件

最近我在进行一些前端小开发&#xff0c;遇到了一个小需求&#xff1a;我想要将数据导出到 Excel 文件&#xff0c;并希望能够封装成一个函数来实现。这个函数需要接收一个二维数组作为参数&#xff0c;数组的第一行是表头。在导出的过程中&#xff0c;要能够确保避免出现中文乱…...

phar反序列化及绕过

目录 一、什么是phar phar://伪协议格式&#xff1a; 二、phar结构 1.stub phar&#xff1a;文件标识。 格式为 xxx; *2、manifest&#xff1a;压缩文件属性等信息&#xff0c;以序列化存 3、contents&#xff1a;压缩文件的内容。 4、signature&#xff1a;签名&#…...

汽车IVI中控开发入门及进阶(三十):视频图像滚动问题分析(imx6+TVP5150+Camera)

前言: DA主控SOC采用imx6,TVP5150作为camera摄像头视频的解码decode芯片,imx6采用linux系统。 关于imx6,请参阅:汽车IVI中控开发入门及进阶(二十九):i.MX6-CSDN博客 Contributor III:...

给PDF添加书签的通解-姜萍同款《偏微分方程》改造手记

背景 网上找了一本姜萍同款的《偏微分方程》&#xff0c;埃文斯&#xff0c;英文版&#xff0c;可惜没有书签&#xff0c;洋洋七百多页&#xff0c;没有书签&#xff0c;怎么读&#xff1f;用福昕编辑器自然能手工一个个加上&#xff0c;可是劳神费力&#xff0c;非程序员所为…...

在寻找电子名片在线制作免费生成?5个软件帮助你快速制作电子名片

在寻找电子名片在线制作免费生成&#xff1f;5个软件帮助你快速制作电子名片 当你需要快速制作电子名片时&#xff0c;有几款免费在线工具可以帮助你实现这个目标。这些工具提供了丰富的设计模板和元素&#xff0c;让你可以轻松地创建个性化、专业水平的电子名片。 1.一键logo…...

Github 2024-06-16 php开源项目日报 Top10

根据Github Trendings的统计,今日(2024-06-16统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量PHP项目10Livewire: Laravel中构建动态UI组件的全栈框架 创建周期:1818 天开发语言:PHP协议类型:MIT LicenseStar数量:21388 个Fork数量:1…...

docker将容器打包提交为镜像,再打包成tar包

将容器打包成镜像可以通过以下步骤来实现。这里以 Docker 为例&#xff0c;假设你已经安装了 Docker 并且有一个正在运行的容器。 1. 找到正在运行的容器 首先&#xff0c;你需要找到你想要打包成镜像的容器的 ID 或者名字。可以使用以下命令查看所有正在运行的容器&#xff…...

洛阳水利乙级资质企业在水利科技创新中的作用

洛阳水利乙级资质企业在水利科技创新中扮演着重要的角色&#xff0c;其贡献主要体现在以下几个方面&#xff1a; 一、技术引进与研发 引进先进技术&#xff1a;洛阳水利乙级资质企业积极引进国内外先进的水利工程技术和管理经验&#xff0c;结合本地实际情况&#xff0c;形成独…...

Redis-事务-基本操作-在执行阶段出错不会回滚

文章目录 1、Redis事务控制命令2、Redis事务错误处理3、Redis事务错误处理&#xff0c;在执行阶段出错不会回滚 1、Redis事务控制命令 127.0.0.1:6379> keys * (empty array) 127.0.0.1:6379> multi OK 127.0.0.1:6379(TX)> set a1 v1 QUEUED 127.0.0.1:6379(TX)>…...

aws的alb,多个域名绑定多个网站实践

例如首次创建的alb负载均衡只有www.xxx.com 需要添加 负载 test2.xxx.com aws的Route 53产品解析到负载均衡 www.xxx.com 添加CNAME&#xff0c;到负载均衡的dns字段axx test2.xxx.com 添加CNAME&#xff0c;到负载均衡的dns字段axx 主要介绍目标组和规则 创建alb就不介…...

WPF/C#:数据绑定到方法

在WPF Samples中有一个关于数据绑定到方法的Demo&#xff0c;该Demo结构如下&#xff1a; 运行效果如下所示&#xff1a; 来看看是如何实现的。 先来看下MainWindow.xaml中的内容&#xff1a; <Window.Resources><ObjectDataProvider ObjectType"{x:Type local…...

GBDT算法详解

GBDT算法详解 梯度提升决策树&#xff08;Gradient Boosting Decision Trees&#xff0c;GBDT&#xff09;是机器学习中一种强大的集成算法。它通过构建一系列的决策树&#xff0c;并逐步优化模型的预测能力&#xff0c;在各种回归和分类任务中取得了显著的效果。本文将详细介…...

51单片机宏定义的例子

代码 demo.c #include "hardware.h"void delay() {volatile unsigned int n;for(n 0; n < 50000; n); }int main(void) {IO_init();while(1){PINSET(LED);delay();PINCLR(LED);delay();}return 0; }cfg.h #ifndef _CFG_H_ #define _CFG_H_// #define F_CPU …...

香港云服务器怎么处理高并发和突发流量?

处理香港云服务器的高并发和突发流量需要综合考虑多种因素&#xff0c;包括服务器配置优化、负载均衡、缓存策略、CDN加速以及监控和自动化调整等措施。以下是处理高并发和突发流量的一些关键步骤和建议&#xff1a; 1. 优化服务器配置 选择高性能实例&#xff1a;根据预期的并…...

c,c++,qt从入门到地狱

前言 1 你所能用的正与你手写的效率相同2 你不需要为你没有用到的特性付出 (无脑的调用函数or公式的空壳人类请出门右转)c 001 scanf and strcpy "_s"bug? 微软官方说明1 Visual Studio 库中的许多函数、成员函数、函数模板和全局变量已弃用,改用微软新增的强化函数…...

iptables(6)扩展匹配条件--tcp-flags、icmp

简介 前面我们已经介绍了不少的扩展模块,例如multiport、iprange、string、time、connlimit模块,但是在tcp扩展模块中只介绍了tcp扩展模块中的”--sport”与--dport”选项,并没有介绍”--tcp-flags”选项,那么这篇文章,我们就来认识一下tcp扩展模块中的”--tcp-flags”和i…...

C#-Json文件的读写

文章速览 命名空间读取Json核心代码示例 写入Json核心代码示例 坚持记录实属不易&#xff0c;希望友善多金的码友能够随手点一个赞。 共同创建氛围更加良好的开发者社区&#xff01; 谢谢~ 命名空间 using Newtonsoft.Json;读取Json 核心代码 //核心代码using (StreamReader…...

【2023级研究生《人工智能》课程考试说明】

一&#xff0e;试题范围 考试题共包括4道大题&#xff1a; 第一大题&#xff1a;分类和回归----&#xff08;8选1&#xff09; 第二大题&#xff1a;降维和聚类----&#xff08;7选1&#xff09; 第三大题&#xff1a;API调用&#xff08;课程中学习过的所有云平台&#xff09…...

C语言队列操作及其安全问题

在C语言中&#xff0c;队列是一种常用的数据结构&#xff0c;特别适用于嵌入式开发中的任务调度、缓冲区管理等场景。下面是一个简单的循环队列的模板代码&#xff0c;它使用数组来实现队列&#xff0c;并提供了基本的入队&#xff08;enqueue&#xff09;和出队&#xff08;de…...

next.js v14 升级全步骤|迁移 pages Router 到 App Router

【概括】本文升级整体按照官网文档指引进行&#xff0c;在迁移 pages Router 前先看了官网的实操视频。 【注意】文章内对 .babel.ts、next.config.js 进行了多次更改&#xff0c;最终配置可见 报错3: Server Error ReferenceError: React is not defined 一、升级 Next.js 版…...

如何在Ubuntu上安装WordPress

如何在Ubuntu上安装WordPress 执行系统更新 apt update && apt upgrade第一步 安装 Apache apt install apache2确认 Apache 安装是否成功. systemctl status apache2安装成功后 打开浏览器输入 http://server-ip-address 第二步 安装 MySQL apt install mariad…...

处理导入Excel文件过大导致Zip bomb detected的问题

处理导入Excel文件过大导致Zip bomb detected的问题 处理导入Excel文件过大导致Zip bomb detected的问题解决方案完整示例代码处理内存溢出问题优化处理大文件的策略 处理导入Excel文件过大导致Zip bomb detected的问题 在Java应用中导入Excel文件时&#xff0c;可能会遇到文件…...

【FFmpeg】AVIOContext结构体

【FFmpeg】AVIOContext结构体 1.AVIOContext结构体的定义 参考&#xff1a; FFMPEG结构体分析&#xff1a;AVIOContext 示例工程&#xff1a; 【FFmpeg】调用ffmpeg库实现264软编 【FFmpeg】调用ffmpeg库实现264软解 【FFmpeg】调用ffmpeg库进行RTMP推流和拉流 【FFmpeg】调用…...

Python控制结构

文章目录 控制结构1. 条件语句1.1 if语句1.2 elif语句1.3 else 语句 2. 循环语句2.1 for循环2.2 while循环 控制循环的语句3.1 break语句3.2 continue语句3.3 else语句与循环配合 控制结构 Python中的控制结构是指管理代码执行流程的语句和机制&#xff0c;包括条件语句、循环…...

OpenCV--图形轮廓

图形轮廓 图像轮廓查找轮廓绘制轮廓计算轮廓的面积和周长多边形逼近与凸包外接矩形 图像轮廓 import cv2 import numpy as np""" 图形轮廓--具有相同颜色或灰度的连续点的曲线 用于图形分析和物体的识别和检测 注意&#xff1a;为了检测的准确性&#xff0c;必…...

MYSQL通过EXPLAIN关键字来分析SQL查询的执行计划,判断是否命中了索引

在MySQL中&#xff0c;你可以通过EXPLAIN关键字来分析SQL查询的执行计划&#xff0c;从而判断是否命中了索引。 准备查询语句&#xff1a; 首先&#xff0c;你需要一个带有WHERE子句的SELECT查询&#xff0c;因为WHERE子句中的条件通常与索引相关联。例如&#xff1a; SELECT …...

clean code-代码整洁之道 阅读笔记(第十二章)

第十二章 系统 12.1 通过选进设计达到整洁目的 Kent Beck关于简单设计的四条规则&#xff0c;对于创建具有良好设计的软件有着莫大的帮助。 据Kent所述&#xff0c;只要遵循以下规则&#xff0c;设计就能变得"简单"&#xff1a;运行所有测试&#xff1b;不可重复&…...

FFmpeg YUV编码为H264

使用FFmpeg库把YUV420P文件编码为H264文件&#xff0c;FFmpeg版本为4.4.2-0。 需要yuv测试文件的&#xff0c;可以从我上传的MP4文件中用ffmpeg提取&#xff0c;命令如下&#xff1a; ffmpeg -i <input.mp4> -pix_fmt yuv420p <output.yuv> 代码如下&#xff1a;…...

【C语言】顺序表(上卷)

什么是数据结构&#xff1f; 数据结构是由“数据”和“结构”两词组合而来的。 数据需要管理。数据结构就是计算机存储、组织数据的方式。比如一个班级就是一个结构&#xff0c;管理的就是班级里的学生。如果我们要找三年2班的同学李华&#xff0c;就可以直接去三年2班找而不…...

Luma AI如何注册:文生视频领域的新星

文章目录 Luma AI如何注册&#xff1a;文生视频领域的新星一、Luma 注册方式二、Luma 的效果三、Luma 的优势四、Luma 的功能总结 Luma AI如何注册&#xff1a;文生视频领域的新星 近年来&#xff0c;Luma AI 凭借其在文生视频领域的创新技术&#xff0c;逐渐成为行业的新星。…...

一站式实时数仓Hologres整体能力介绍

讲师&#xff1a;阿里云Hologres PD丁烨 一、产品定位 随着技术的进步&#xff0c;大数据正从规模化转向实时化处理。用户对传统的T1分析已不满足&#xff0c;期望获得更高时效性的计算和分析能力。例如实时大屏&#xff0c;城市大脑的交通监控、风控和实时的个性化推荐&…...

如何在 Windows 上安装 Docker Desktop

如何在 Windows 上安装 Docker Desktop Docker 是一个开放平台&#xff0c;用于开发、部署和运行应用程序。Docker Desktop 是 Docker 在 Windows 和 macOS 上的官方客户端&#xff0c;它使得开发者能够轻松地在本地环境中构建、运行和共享容器化应用程序。本文将详细介绍如何…...

WPF由文本框输入的内容动态渲染下拉框

在做项目过程中&#xff0c;需要扫码枪扫描快递单号或者手动输入快递单号时&#xff0c;自动检索该单号是哪个快递公司的&#xff0c;下拉框中自动带出该单号的快递公司。当输入的快递单号不存在时&#xff0c;将数据库中所有快递公司都带出 效果&#xff1a; 通过输入的快递单…...

RPCMon:一款基于ETW的RPC监控工具

关于RPCMon RPCMon是一款基于事件跟踪的WindowsRPC监控工具&#xff0c;该工具是一款GUI工具&#xff0c;可以帮助广大研究人员通过ETW&#xff08;Event Tracing for Windows&#xff09;扫描RPC通信。 RPCMon能够为广大研究人员提供进程之间RPC通信的高级视图&#xff0c;该…...

【odoo】常用的字符转义:“>“,“<“,““,“/“等

概要 字符转义是指在编写代码或处理文本数据时&#xff0c;将特殊字符转换为另一种形式&#xff0c;以便在特定的上下文中正确解析和处理这些字符。 内容 特殊字符描述XML转义表示法&和符号&amp;<小于符号<>大于符号>"双引号&quot;单引号&ap…...

李宏毅深度学习项目——HW1个人笔记

视频链接 PDF链接 googleColab链接 GoogleColab是一个免费的jupyter notebook&#xff0c;可以用上面的gpu资源进行训练 题目 通过前两天的数据&#xff0c;预测第三天某个人感染新冠的概率 范例 导包 # Numerical Operations import math import numpy as np# Reading/Wr…...

3D Gaussian Splatting Windows安装

0.安装C++ 编译器 https://aka.ms/vs/17/release/vs_buildtools.exe 1.下载源码 git clone https://github.com/graphdeco-inria/gaussian-splatting --recursive 2.安装cuda NVIDIA GPU Computing Toolkit CUDA Toolkit Archive | NVIDIA Developer 3.安装COLMAP...

人脸识别——可解释的人脸识别(XFR)人脸识别模型是根据什么来识别个人的

可解释性人脸识别&#xff08;XFR&#xff09;&#xff1f; 人脸识别有一个任务叫1:N&#xff08;识别&#xff09;。这个任务将一个人的照片与N张注册照片进行比较&#xff0c;找出相似度最高的人。 这项任务用于刑事调查和出入境点。在犯罪调查中&#xff0c;任务从监控摄像…...

仓库管理系统的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;管理员管理&#xff0c;公告管理&#xff0c;物资管理&#xff0c;基础数据管理&#xff0c;用户管理 用户账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;公告管理&#xff0c;物…...

最火AI角色扮演流量已达谷歌搜索20%!每秒处理2万推理请求,Transformer作者公开优化秘诀

卡奥斯智能交互引擎是卡奥斯基于海尔近40年工业生产经验积累和卡奥斯7年工业互联网平台建设的最佳实践&#xff0c;基于大语言模型和RAG技术&#xff0c;集合海量工业领域生态资源方优质产品和知识服务&#xff0c;旨在通过智能搜索、连续交互&#xff0c;实时生成个性化的内容…...

MySQL:MySQL分组排序函数rank()、row_number()、dense_rank()与partition by结合使用

一、前言 在 MySQL 中&#xff0c;虽然标准的 SQL 函数 RANK(), ROW_NUMBER(), 和 DENSE_RANK() 是 SQL 标准的一部分&#xff0c;但早期的 MySQL 版本并不直接支持这些窗口函数。然而&#xff0c;从 MySQL 8.0 开始&#xff0c;这些函数被引入以支持窗口函数&#xff08;也称为…...

opencv c++ 检测图像尺寸大小,标注轮廓

1. 项目背景 本项目旨在开发一个图像处理程序&#xff0c;通过使用计算机视觉技术&#xff0c;能够自动检测图像中物体的尺寸并进行分类。项目利用了开源的计算机视觉库 OpenCV&#xff0c;实现了图像的灰度处理、二值化、轮廓检测、边界框绘制以及尺寸分类等功能。通过这些功…...

Python数据可视化基础:使用Matplotlib绘制图表

Python数据可视化基础&#xff1a;使用Matplotlib绘制图表 数据可视化是数据分析中的重要环节&#xff0c;它可以帮助我们更直观地理解数据。Python作为一门强大的编程语言&#xff0c;提供了多种库来支持数据可视化&#xff0c;其中Matplotlib是最为流行和功能丰富的库之一。…...

Java开发接口设计的原则

在现代软件开发实践中&#xff0c;接口设计扮演着至关重要的角色。它不仅关乎代码的结构和未来的可维护性&#xff0c;还直接影响到软件系统的灵活性和扩展性。本文将通过实例详解几个核心的接口设计原则&#xff0c;帮助开发者更好地编写和管理接口&#xff0c;从而提升软件的…...

[火灾警报系统]yolov5_7.0-pyside6火焰烟雾识别源码

国内每年都会发生大大小小的火灾&#xff0c;造成生命、财产的损失。但是很多火灾如果能够早期发现&#xff0c;并及时提供灭火措施&#xff0c;将会大大较小损失。本套源码采用yolov5-7.0目标检测算法结合pyside6可视化界面源码&#xff0c;当检测到火灾时&#xff0c;能否发出…...

机器学习和深度学习区别

定义和范围&#xff1a; 机器学习&#xff1a;是一门多领域交叉学科&#xff0c;涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。它专门研究计算机怎样模拟或实现人类的学习行为&#xff0c;以获取新的知识或技能&#xff0c;重新组织已有的知识结构使之不断改…...

【功能详解】银河麒麟操作系统“安全启动”是如何发挥作用的?

2023年12月&#xff0c;财政部、工信部发布了7项信息类产品《政府采购需求标准》&#xff0c;为包括操作系统在内多项产品的政府集中采购提供政策支撑。其中&#xff0c;安全、可信作为国产操作系统的基本要求备受关注。 安全体系的构建离不开操作系统本身的硬实力&#xff0c…...

关于多线程的理解

#系列文章 关于时间复杂度o(1), o(n), o(logn), o(nlogn)的理解 关于HashMap的哈希碰撞、拉链法和key的哈希函数设计 关于JVM内存模型和堆内存模型的理解 关于代理模式的理解 关于Mysql基本概念的理解 关于软件设计模式的理解 关于Redis知识的理解 文章目录 前言一、线程…...

C语言 | Leetcode C语言题解之第155题最小栈

题目&#xff1a; 题解&#xff1a; //单调栈 单调递减 typedef struct {//正常 stackint stack[10000];int stackTop;//辅助 stackint minStack[10000];int minStackTop; } MinStack;MinStack* minStackCreate() {MinStack* newStack (MinStack *) malloc(sizeof(MinS…...

Html_Css问答集(9)

57、clear:both本质上是做什么&#xff1f;对父元素&#xff0c;兄弟、子元素有什么影响&#xff1f; clear属性用于控制一个元素两侧不能出现浮动元素, 本质上,clear属性可以看作是在元素前面或后面添加了一个"清除区域",不允许该区域内有浮动元素存在。根据值的不同…...

微服务架构,通信协议,Web服务器和kafka

目录 1. 服务器 (Server)以及无服务器&#xff08;Serverless&#xff09; 2. FTP (File Transfer Protocol) 3. RMI (Remote Method Invocation) 4. XML-RPC 5. SOAP (Simple Object Access Protocol) 6. REST (Representational State Transfer) 7. RESTful (…...

轻量级自适用商城卡密发卡源码(可运营)

一款全开源非常好看的发卡源码。轻量级自适应个人自助发卡简介&#xff0c;这是一款二次开发的发卡平台源码修复原版bug,删除无用的代码。所有文件全部解密&#xff0c;只保留后台版权信息内容。大家放心使用&#xff0c;可以用于商业运营。轻量级自适应个人自助发卡。 源码下…...

unseping

nnnd&#xff0c;这道题谁标的难度1&#xff01;参考文章&#xff1a;江苏工匠杯-unseping&序列化&#xff0c;正则绕过(全网最简单的wp)_江苏工匠杯unseping-CSDN博客 这是这道题的源码&#xff0c;一看exec和unserialize就是反序列化和命令执行&#xff0c;还有个正则应…...

Python实现人脸识别

直接上代码&#xff1a; import face_recognition import time from PIL import Image, ImageDraw def faceRecognition(fileName): # 加载图片image face_recognition.load_image_file(fileName)# 人脸定位beginTime time.time()face_locations face_recognition.face_lo…...

BGP路径属性

路径属性分类 1. 公认属性&#xff08;所有 BGP 路由器都能识别&#xff09; (1) 公认必遵 a&#xff09; AS path b&#xff09;Origin c&#xff09; Next hop (2) 公认任意 a&#xff09; local preference b&#xff09;atomic aggregate 2. 可选属性&#xff08;…...

540°全域透明底盘“爸”气从容跨越障碍

无论孩子多大,在学业或工作上遇到的障碍,父亲总会以更宽广的视野为我们拨开云雾。为给全家人带来开挂级的开阔视野,而奇瑞舒享家配备540全域透明底盘,透明底盘+360高清全景影像,让障碍无处遁形。且可实现高清2D/3D视图切换,全方位观察车辆周围及车底的情况,一目了然;还…...

汽车智能化时代国产芯片加速“上车”

21世纪经济报道记者倪雨晴、实习生朱梓烨 深圳、广州报道随着汽车行业朝着电动化与智能化的方向发展,汽车芯片的重要性也越发凸显,市场需求也同步大量增长。“2023年,中国车用半导体中的中国品牌市场份额约在10%。我们预测到2030年左右,中国品牌在中国市场的份额应该有机会…...

五菱高管发文“明年更卷”,消费者:车市越卷,我越幸福

日前,上汽通用五菱品牌事业部副总经理周钘在社交平台上发文称,“2024年初至今,宝骏停掉了所有的市场费用。企业认为如果产品、市场、渠道三者节奏都不对则是‘白费’”,“虽然今年行业确实卷,明年会更卷,但我们所有准备”。周钘从车企的角度,说出了车市竞争的残酷。不仅…...

JRT性能演示

演示视频 君生我未生&#xff0c;我生君已老&#xff0c;这里是java信创频道JRT&#xff0c;真信创-不糊弄。 基础架构决定上层建筑&#xff0c;和给有些品种的植物种植一样&#xff0c;品种不对&#xff0c;施肥浇水再多&#xff0c;也是不可能长成参天大树的。JRT吸收了各方…...

云原生架构内涵_3.主要架构模式

云原生架构有非常多的架构模式&#xff0c;这里列举一些对应用收益更大的主要架构模式&#xff0c;如服务化架构模式、Mesh化架构模式、Serverless模式、存储计算分离模式、分布式事务模式、可观测架构、事件驱动架构等。 1.服务化架构模式 服务化架构是云时代构建云原生应用的…...

Django入门全攻略:从零搭建你的第一个Web项目

系列文章目录 努力ing Django入门全攻略&#xff1a;从零搭建你的第一个Web项目努力ing… 文章目录 系列文章目录前言一、Django1.1 Django安装1.2 Django项目创建1.3 目录介绍 二、子应用2.1 子应用创建2.2 目录结构2.3 子应用注册2.4 子应用视图逻辑2.4.1 编写视图2.4.2 编写…...