当前位置: 首页 > news >正文

生成视频 zeroscope_v2_576w 学习笔记

目录

生成视频代码:

维度报错:

解决方法,修改代码:


已开源:

视频生成模型 Zeroscope开源 免费无水印

 

视频生成模型 Zeroscope_v2_576w 开源 - 腾讯云开发者社区-腾讯云

生成视频代码:

import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
import os
# os.environ['HTTP_PROXY'] = 'http://127.0.0.1:7890'os.environ["HF_TOKEN"] = "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"
# os.environ['HTTPS_PROXY'] = 'https://127.0.0.1:7890'# pipe = DiffusionPipeline.from_pretrained(r"D:\360安全浏览器下载", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16,use_auth_token=os.environ["HF_TOKEN"])
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()prompt = "Darth Vader is surfing on waves"
video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames
video_path = export_to_video(video_frames)
print(video_path)

维度报错:

Traceback (most recent call last):File "E:\project\jijia\aaa.py", line 18, in <module>video_path = export_to_video(video_frames)File "D:\ProgramData\miniconda3\envs\pysd\lib\site-packages\diffusers\utils\export_utils.py", line 135, in export_to_videoh, w, c = video_frames[0].shape
ValueError: too many values to unpack (expected 3)

解决方法,修改代码:

def export_to_video(video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10
) -> str:if is_opencv_available():import cv2else:raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))if output_video_path is None:output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name# Convert PIL images to numpy arrays if neededif isinstance(video_frames[0], PIL.Image.Image):video_frames = [np.array(frame) for frame in video_frames]# Ensure the frames are in the correct formatif isinstance(video_frames[0], np.ndarray):# Check if frames are 4-dimensional and handle accordinglyif len(video_frames[0].shape) == 4:video_frames = [frame[0] for frame in video_frames]# Convert frames to uint8video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]# Ensure all frames are in (height, width, channels) formath, w, c = video_frames[0].shapefourcc = cv2.VideoWriter_fourcc(*"mp4v")video_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))for frame in video_frames:img = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)video_writer.write(img)video_writer.release()return output_video_pathdef export_to_video_o(video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 10
) -> str:if is_opencv_available():import cv2else:raise ImportError(BACKENDS_MAPPING["opencv"][1].format("export_to_video"))if output_video_path is None:output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").nameif isinstance(video_frames[0], np.ndarray):video_frames = [(frame * 255).astype(np.uint8) for frame in video_frames]elif isinstance(video_frames[0], PIL.Image.Image):video_frames = [np.array(frame) for frame in video_frames]fourcc = cv2.VideoWriter_fourcc(*"mp4v")h, w, c = video_frames[0].shapevideo_writer = cv2.VideoWriter(output_video_path, fourcc, fps=fps, frameSize=(w, h))for i in range(len(video_frames)):img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR)video_writer.write(img)return output_video_path

相关文章:

生成视频 zeroscope_v2_576w 学习笔记

目录 生成视频代码&#xff1a; 维度报错&#xff1a; 解决方法&#xff0c;修改代码&#xff1a; 已开源&#xff1a; 视频生成模型 Zeroscope开源 免费无水印 视频生成模型 Zeroscope_v2_576w 开源 - 腾讯云开发者社区-腾讯云 生成视频代码&#xff1a; import torch fro…...

H3C综合实验

实验拓扑 实验要求 1、按照图示配置IP地址 2、sw1和sw2之间的直连链路配置链路聚合 3、 公司内部业务网段为VLAN10和VLAN20; VLAN 10是市场部&#xff0c;vlan20是技术部&#xff0c;要求对VLAN进行命名以便识别&#xff1b;PC1属于vlan10&#xff0c;PC2属于vlan20&#xf…...

QThread 与QObject::moveToThread在UI中的应用

1. QThread的两种用法 第一种用法就是继承QThread&#xff0c;然后覆写 virtual void run()&#xff0c; 这种用法的缺点是不能利用信号槽机制。 第二种用法就是创建一个线程&#xff0c;创建一个对象&#xff0c;再将对象moveToThread, 这种可以充分利用信号槽机制&#xff…...

安卓逆向案例——X酷APP逆向分析

X酷APP逆向分析 这里介绍一下两种不同的挂载证书的方法。 chls.pro/ssl无法在浏览器中下载证书是什么原因解决方法&#xff1a; 法一 1. 挂载系统分区为读写 使用正确的挂载点来挂载系统分区为读写&#xff1a; su mount -o remount,rw /dev/uijISjR/.magisk/block/syste…...

创新案例|星巴克中国市场创新之路: 2025目标9000家店的挑战与策略

星巴克创始人霍华德舒尔茨&#xff1a;“为迎接中国市场的全面消费复苏&#xff0c;星巴克2025年推进9000家门店计划&#xff0c;将外卖、电商以及家享和外出场景咖啡业务纳入中国新一轮增长计划中。”在面临中国市场同店增长大幅下滑29%背景下&#xff0c;星巴克通过DTC用户体…...

计算机网络 MAC地址表管理

一、理论知识 1.MAC地址表&#xff1a;交换机使用MAC地址表来记录各MAC地址对应的端口&#xff0c;用于帧转发的目的。 2.老化机制&#xff1a;交换机会为每一条MAC地址表项设置老化时间&#xff0c;老化时间到期后未收到该MAC地址报文的表项将被删除&#xff0c;释放资源。 …...

【免费API推荐】:各类API资源免费获取【11】

欢迎来到各类API资源的免费获取世界&#xff01;幂简集成为您提供了一个集合了各种免费API接口的平台。无论您是开发者、数据分析师还是创业者&#xff0c;都可以通过我们的平台轻松免费获取所需的API资源。幂简精心整理了各类API接口&#xff0c;涵盖了不同领域的需求&#xf…...

技术驱动会展:展位导航系统的架构与实现

随着会展行业的快速发展&#xff0c;大型会展中心面临着如何提升参展者体验、提高招商效率的挑战。针对客户反馈的展馆面积大、展位查找困难等问题&#xff0c;维小帮提出一套智慧会展导航解决方案&#xff0c;旨在通过先进的室内导航技术提升会展中心的运营效率和参展者的满意…...

适用于轨道交通专用的板卡式网管型工业以太网交换机

是网管型 CompactPCI板卡式冗余环网交换机。前面板带有6个 10/100/1000Base-T(X)M12接口。后面的CPCI接口有 8个10/100/1000Base-T (X) 以太网接口。 是特别为轨道交通行业EN50155标准要求而设计的坚固型交换机。它同时具有以下特性&#xff1a; ● 支持2线以太网距离扩展端口&…...

excel基本操作

excel 若要取消在数据表中进行的所有筛选 步骤操作&#xff1a; 单击“数据”选项卡。在“排序和筛选”组中&#xff0c;找到“清除”按钮。点击“清除”按钮。 图例&#xff1a; 将文本文件的数据导入到Excel工作表中进行数据处理 步骤&#xff1a; 在Excel中&#xff0c…...

C++系统相关操作2 - 获取系统环境变量

1. 关键词2. sysutil.h3. sysutil.cpp4. 测试代码5. 运行结果6. 源码地址 1. 关键词 C 系统调用 环境变量 getenv 跨平台 2. sysutil.h #pragma once#include <cstdint> #include <string>namespace cutl {/*** brief Get an environment variable.** param na…...

适合小白学习的项目1906java Web智慧食堂管理系统idea开发mysql数据库web结构java编程计算机网页源码servlet项目

一、源码特点 java Web智慧食堂管理系统是一套完善的信息管理系统&#xff0c;结合java 开发技术和bootstrap完成本系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 前段主要技术 bootstra…...

AI通用大模型不及垂直大模型?各有各的好

​​​​​​​AI时代&#xff0c;通用大模型和垂直大模型&#xff0c;两者孰优孰劣&#xff0c;一直众说纷纭。 通用大模型&#xff0c;聚焦基础层&#xff0c;如ChatGPT、百度文心一言&#xff0c;科大讯飞星火大模型等&#xff0c;都归属通用大模型&#xff0c;它们可以解答…...

农产品价格信息系统小程序

一键掌握市场脉动 &#x1f33e; 引言&#xff1a;为何关注农产品价格&#xff1f; 在当今社会&#xff0c;农产品价格的波动直接关系到农民的收入和消费者的生活成本。因此&#xff0c;及时、准确地掌握农产品价格信息&#xff0c;对于农民合理安排生产、消费者做出购买决策都…...

【LLM-多模态】高效多模态大型语言模型综述

一、结论写在前面 模型规模的庞大及训练和推理成本的高昂&#xff0c;限制了MLLMs在学术界和工业界的广泛应用。因此&#xff0c;研究高效轻量级的MLLMs具有巨大潜力&#xff0c;特别是在边缘计算场景中。 论文深入探讨了高效MLLM文献的领域&#xff0c;提供了一个全面的视角…...

ASP .Net Core创建一个httppost请求并添加证书

ASP .Net Core创建一个httppost请求并添加证书 创建.net Core程序&#xff0c;使用自签名证书&#xff0c;可以处理https的get和post请求。 创建证书 创建自签名证书的流程可以在这里查看&#xff1a; https://blog.csdn.net/GoodCooking/article/details/139815278创建完毕…...

Redis入门篇

目录 传送门一、前言二、NoSQL1、ont only sql&#xff0c;特点&#xff1a;2、NoSQL的四大分类&#xff1a; 三、Redis概念四、五大数据类型: 传送门 SpringMVC的源码解析&#xff08;精品&#xff09; Spring6的源码解析&#xff08;精品&#xff09; SpringBoot3框架&#…...

变电站智能巡检机器人解决方案

我国拥有庞大的电网体系&#xff0c;变电站数量众多&#xff0c;且近年来快速增长。然而目前我国变电站巡检方式仍以人工为主&#xff0c;存在效率低下、监控不全面等问题。变电站通常是一个封闭的系统空间&#xff0c;设备种类繁多、占地面积广阔&#xff0c;这对巡检人员实时…...

Linux Kernel入门到精通系列讲解(QEMU-虚拟化篇) 2.5 Qemu实现RTC设备

1. 概述 上一章节起(5.4小节),我们已经把整个Naruto Pi都跑通了,从BL0到kernel再到Rootfs都通了,目前可以说已经具备学习Linux得基础条件,剩下得都只是添砖加瓦,本小节我们将添加RTC,如果你还没有添加RTC,你可以试试不添加RTC时,Linux的时间戳会很奇怪,加了RTC后,…...

【自动驾驶】通过下位机发送的加速度、角速度计算机器人在世界坐标系中的姿态

文章目录 原始代码全局变量定义逆平方根函数四元数解算函数理论解释四元数加速度计数据归一化计算方向余弦矩阵的第三行计算误差计算并应用积分反馈应用比例反馈积分陀螺仪数据,更新四元数归一化四元数更新姿态数据整体流程原始代码 #define SAMPLING_FREQ 20.0f // 采样频率…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 &#xff08;1&#xff09;连接查询&#xff08;JOIN&#xff09; 内连接&#xff08;INNER JOIN&#xff09;&#xff1a;返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会&#xff0c;其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具&#xff0c;对过去十年 WWDC 主题演讲内容进行了系统化分析&#xff0c;形成了这份…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...

高效的后台管理系统——可进行二次开发

随着互联网技术的迅猛发展&#xff0c;企业的数字化管理变得愈加重要。后台管理系统作为数据存储与业务管理的核心&#xff0c;成为了现代企业不可或缺的一部分。今天我们要介绍的是一款名为 若依后台管理框架 的系统&#xff0c;它不仅支持跨平台应用&#xff0c;还能提供丰富…...