MCT Self-Refine:创新集成蒙特卡洛树搜索 (MCTS)提高复杂数学推理任务的性能,超GPT4,使用 LLaMa-3 8B 进行自我优化
📜 文献卡
题目: Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B |
---|
作者: Di Zhang; Xiaoshui Huang; Dongzhan Zhou; Yuqiang Li; Wanli Ouyang |
DOI: 10.48550/arXiv.2406.07394 |
摘要: This paper introduces the MCT Self-Refine (MCTSr) algorithm, an innovative integration of Large Language Models (LLMs) with Monte Carlo Tree Search (MCTS), designed to enhance performance in complex mathematical reasoning tasks. Addressing the challenges of accuracy and reliability in LLMs, particularly in strategic and mathematical reasoning, MCTSr leverages systematic exploration and heuristic self-refine mechanisms to improve decision-making frameworks within LLMs. The algorithm constructs a Monte Carlo search tree through iterative processes of Selection, self-refine, self-evaluation, and Backpropagation, utilizing an improved Upper Confidence Bound (UCB) formula to optimize the exploration-exploitation balance. Extensive experiments demonstrate MCTSr’s efficacy in solving Olympiad-level mathematical problems, significantly improving success rates across multiple datasets, including GSM8K, GSM Hard, MATH, and Olympiad-level benchmarks, including Math Odyssey, AIME, and OlympiadBench. The study advances the application of LLMs in complex reasoning tasks and sets a foundation for future AI integration, enhancing decision-making accuracy and reliability in LLM-driven applications. |
GitHub: 托洛茨基1997/MathBlackBox (github.com) |
⚙️ 内容
本文介绍了一种名为MCTSelf-Refine(MCTSr)的新算法,它将大型语言模型(LLMs)与蒙特卡罗树搜索(MCTS)相结合,旨在提高复杂数学推理任务的表现。该算法通过选择、自我修正、自我评估和反向传播等迭代过程构建一个蒙特卡罗搜索树,并利用改进后的上置信界公式优化探索和开发之间的平衡。实验结果表明,MCTSr在解决奥林匹克级别的数学问题方面非常有效,显著提高了多个数据集的成功率,包括GSM8K、GSM Hard、MATH以及Math Odyssey、AIME和Olympiad-Bench等奥林匹克级别基准测试。这项研究为未来AI集成的应用奠定了基础,增强了基于LLM决策制定的准确性和可靠性。
💡 创新点
- MCT Self-Refine (MCTSr)算法:这是一种创新的集成方式,将LLMs与MCTS相结合,特别设计用于处理复杂的数学推理任务。
- 动态探索与精炼:通过迭代的选择、自我精炼、自我评估和反向传播过程构建蒙特卡洛搜索树,并使用改进的上置信界(UCB)公式来优化探索与利用的平衡。
- 应用范围广泛:实验证明,MCTSr能显著提升在多个数据集上的解题成功率,包括GSM8K、GSM Hard、MATH以及奥林匹克级别的Math Odyssey、AIME和Olympiad-Bench等基准测试。
🧩 不足
尽管MCTSr在数学任务上显示了优势,但其研究仍处于初步阶段,且其潜在应用领域,如黑盒优化和大语言模型的自我驱动校准,需要进一步探索。此外,MCTSr的组件高度可扩展,需要持续开发以识别和比较更广泛的组件算法,以提高实用性和有效性。
🔁 实验卡
💧 数据
实验使用的数据来自多个数据集,包括GSM8K、GSM Hard、MATH,以及奥林匹克数学水平的Math Odyssey、AIME和Olympiad-Bench。这些数据集涵盖了不同难度的数学问题,用以全面测试MCTSr算法的性能。
👩🏻💻 方法
本文提出了一种名为MCTSr(Multi-Criteria Tree Search with Refinement)的对话系统优化算法。该算法主要由初始化、选择、自适应优化、自我评估、反向传播以及UCB更新六个阶段组成。在每个阶段中,算法通过不同的策略和技术来不断优化回答的质量,并探索新的可能性。
首先,在初始化阶段,算法使用一个简单的模型生成的答案和一个“我不知道”的占位符答案来建立根节点,以减少过拟合的风险。然后,在选择阶段,算法利用价值函数Q对未完全展开的所有答案进行排名,并根据贪婪策略选择最高价值的节点进行进一步的探索和细化。接着,在自适应优化阶段,算法使用多轮对话反馈引导模型对选定的回答进行优化,从而产生更优的回答a’。在自我评估阶段,算法对优化后的回答进行评分,计算其奖励值和Q值,并引入严格的评分标准和抑制完美分数等约束条件,以确保评分的可靠性和公平性。在反向传播阶段,算法将优化后回答的价值信息向前传递到父节点和其他相关节点,如果任何子节点的Q值发生变化,则更新父节点的Q值。最后,在UCB更新阶段,算法使用UCB公式更新所有节点的UCB值,以便在下一个选择阶段中识别出候选节点并进行进一步扩展或选择。
总结:
- MCTS与LLMs集成:通过集成MCTS到LLMs中,利用MCTS的四阶段流程(选择、扩展、模拟和反向传播)来逐步构建决策树,并通过LLMs提供问题解答。
- 动态剪枝策略:采用改进的UCB公式动态调整探索与利用的平衡,提高了搜索效率和精确度。
- 自我精炼与自我奖励评估:MCTSr引入了机制,允许模型通过迭代过程自我精炼其响应,并通过自我奖励机制评价,这是之前方法所缺乏的。
方法改进:
与传统的基于深度强化学习的对话系统优化算法相比,MCTSr具有以下优点:
- 多目标优化:MCTSr考虑了多个评价指标,如准确性、流畅度、多样性等,使得对话系统的回答更加全面和优质。
- 自我评估机制:MCTSr引入了自我评估机制,通过对回答进行评分并计算奖励值和Q值,可以有效降低过拟合风险,提高回答质量。
- 反向传播技术:MCTSr采用了反向传播技术,将优化后回答的价值信息向前传递到父节点和其他相关节点,可以更好地维护树结构的信息。
🔬 实验
本文主要介绍了MCT Sr算法在解决数学问题方面的应用,并进行了多组对比实验来验证其效果。具体来说,文章包括以下四个部分:
第一部分是MCT Sr算法的原理和实现细节,主要包括自评价、回溯更新和选择策略等三个步骤。
第二部分是对MCT Sr算法的效果进行了评估,通过与GPT-4、Claude 3和Gemini 1.5-Pro等当前最新的封闭源模型进行比较,在多个数据集上测试了算法的表现。其中,实验结果表明随着rollout数的增加,算法的成功率也显著提高,尤其是在较简单的GSM8K数据集中表现更好。然而,在更复杂的GSM-Hard数据集中,算法的性能存在一定的局限性。
第三部分是在MATH数据集上的实验,通过对不同难度级别的问题进行测试,进一步验证了MCT Sr算法的有效性。结果显示,随着rollout数的增加,算法在各个难度级别上的成功率都有所提高,特别是在最困难的第五级中,算法仍然能够取得相对较高的成功率。
第四部分是在奥林匹克竞赛级别的数据集上的实验,包括AIME、GAIC Math Odyssey和OlympiadBench等数据集。结果显示,随着rollout数的增加,算法在这些数据集上的成功率也有明显提高,特别是在GAIC Math Odyssey数据集上,算法的性能得到了更好的展示。
📜 结论
MCTSr算法成功增强了LLMs解决复杂数学问题的能力,为未来AI技术的融合以提高决策和推理准确性奠定了基础。然而,其在更广泛场景下的应用,比如黑盒优化,仍有待进一步研究。
总的来说,本文对MCT Sr算法在解决数学问题方面的应用进行了全面的评估和分析,证明了该算法的有效性和实用性。
🤔 总结卡
文章优点
该研究提出了一种新的算法——MCT Self-Refine(MCTSr),将蒙特卡罗树搜索(MCTS)与大型语言模型相结合,以提高数学问题解决的能力。实验结果表明,在多个数据集上显著提高了解决问题的成功率,并在奥林匹克级别的数学挑战中表现出色。此外,该研究为未来进一步探索MCTSr在更广泛场景中的应用提供了基础。
方法创新点
该研究通过结合MCTS和LLMs的优点,解决了LLMs在精确性和可靠性方面的问题。同时,他们还开发了动态剪枝模块来优化决策过程,使问题求解更加高效和准确。这种方法的创新在于它成功地将两个不同的领域进行了整合,从而提高了LMMs在复杂推理任务上的性能。
未来展望
尽管MCT Sr已经证明了其在数学问题解决方面的潜力,但其在其他领域的应用仍需进一步探索,如黑盒优化和自我驱动的对齐。未来的研究将继续优化算法组件并测试它们在各种问题和环境下的表现,以实现更广泛的实用性和有效性。此外,这项研究为进一步整合AI技术以增强决策和推理准确性奠定了基础。
相关文章:

MCT Self-Refine:创新集成蒙特卡洛树搜索 (MCTS)提高复杂数学推理任务的性能,超GPT4,使用 LLaMa-3 8B 进行自我优化
📜 文献卡 题目: Accessing GPT-4 level Mathematical Olympiad Solutions via Monte Carlo Tree Self-refine with LLaMa-3 8B作者: Di Zhang; Xiaoshui Huang; Dongzhan Zhou; Yuqiang Li; Wanli OuyangDOI: 10.48550/arXiv.2406.07394摘要: This pape…...

自制HTML5游戏《开心消消乐》
1. 引言 游戏介绍 《开心消消乐》是一款基于HTML5技术开发的网页游戏,以其简单的操作方式、轻松的游戏体验和高度的互动性,迅速在社交平台上获得了广泛的关注和传播。玩家通过消除相同类型的元素来获得分数,游戏设计巧妙,易于上手…...

【C++】平衡二叉树(AVL树)的实现
目录 一、AVL树的概念二、AVL树的实现1、AVL树的定义2. 平衡二叉树的插入2.1 按照二叉排序树的方式插入并更新平衡因子2.2 AVL树的旋转2.2.1 新节点插入较高左子树的左侧(LL平衡旋转)2.2.2 新节点插入较高右子树的右侧(RR平衡旋转)…...
第一百一十八节 Java面向对象设计 - Java接口
Java面向对象设计 - Java接口 什么是接口? Java中的接口定义了一个引用类型来创建抽象概念。接口由类实现以提供概念的实现。 在Java 8之前,一个接口只能包含抽象方法。 Java 8允许接口具有实现的静态和默认方法。 接口通过抽象概念定义不相关类之间…...
Flink nc -l -p 监听端口测试
1、9999端口未占用 netstat -apn|grep 99992、消息发送端 nc -l -k -p 9999 {"user":"ming","url":"www.baidu1.com", "timestamp":1200L, "score":1} {"user":"xiaohu","url":…...
在IntelliJ IDEA中使用Spring Boot:快速配置
使用IntelliJ IDEA开发Spring Boot应用程序可以极大地提高开发效率,因为IDEA提供了许多便捷的功能,比如自动补全、代码分析、热部署等。以下是一篇可能的CSDN博客文章草稿,介绍如何在IntelliJ IDEA中使用Spring Boot: 在IntelliJ …...
django filter 批量修改
django filter 批量修改 在Django中,如果你想要批量修改记录,可以使用update()方法。这个方法允许你在一个查询集上执行批量更新,而不需要为每条记录生成单独的数据库事务。 以下是一个使用update()方法批量修改记录的例子: fro…...

maven:中央仓库验证方式改变:401 Content access is protected by token
前几天向maven中央仓库发布版本,执行上传命令mvn release:perform时报错了: [ERROR] Failed to execute goal org.sonatype.plugins:nexus-staging-maven-plugin:1.6.13:deploy (injected-nexus-deploy) on project xxxxx: Failed to deploy artifacts: …...
【面试】http
一、定义 HTTP(超文本传输协议),是一种用于分布式、协作式、超媒体信息系统的应用层协议,它是万维网数据通信的基础。主要特点是无状态(服务器不会保存之前请求的状态)、无连接(服务器处理完请…...

获取泛型,泛型擦除,TypeReference 原理分析
说明 author blog.jellyfishmix.com / JellyfishMIX - githubLICENSE GPL-2.0 获取泛型,泛型擦除 下图中示例代码是一个工具类用于生成 csv 文件,需要拿到数据的类型,使用反射感知数据类型的字段,来填充表字段名。可以看到泛型…...

springboot 3.x 之 集成rabbitmq实现动态发送消息给不同的队列
背景 实际项目中遇到针对不同类型的消息,发送消息到不同的队列,而且队列可能还不存在,需要动态创建,于是写了如下代码,实践发现没啥问题,这里分享下。 环境 springboot 3.2 JDK 17 rabbitMQ模型介绍 图片…...
C++ 代码实现鼠标右键注册菜单,一级目录和二级目录方法
最近做的一个项目, 在使用windows的时候,我希望在右键菜单中添加一个自定义的选项, 该选项下有我经常使用的多个程序快捷方式, 直接上代码 头文件 #pragma once #include <Windows.h> #include <iostream> #include <string> using namespace std; …...

SQLite 3 优化批量数据存储操作---事务transaction机制
0、事务操作 事务的目的是为了保证数据的一致性和完整性。 事务(Transaction)具有以下四个标准属性,通常根据首字母缩写为 ACID: 原子性(Atomicity):确保工作单位内的所有操作都成功完成&…...
[程序员] 表达的能力
之前看CSDN的问答区,很多时候,感觉问题的描述所要表达的意思非常模糊,或者说描述不清。如果是想回答问题的人想回答问题,首先要搞清楚是什么问题,就需要再问问题主很多细节的东西。三来四去,才能搞清楚具体…...

rknn转换后精度差异很大,失真算子自纠
下面是添加了详细注释的优化代码: import cv2 import numpy as np import onnx import onnxruntime as rt from onnx import helper, shape_inferencedef get_all_node_names(model):"""获取模型中所有节点的名称。参数:model (onnx.ModelProto): O…...

【C语言】解决C语言报错:Stack Overflow
文章目录 简介什么是Stack OverflowStack Overflow的常见原因如何检测和调试Stack Overflow解决Stack Overflow的最佳实践详细实例解析示例1:递归调用过深示例2:分配过大的局部变量示例3:嵌套函数调用过多 进一步阅读和参考资料总结 简介 St…...

【滚动哈希 二分查找】1044. 最长重复子串
本文涉及知识点 滚动哈希 二分查找算法合集 LeetCode 1044. 最长重复子串 给你一个字符串 s ,考虑其所有 重复子串 :即 s 的(连续)子串,在 s 中出现 2 次或更多次。这些出现之间可能存在重叠。 返回 任意一个 可能具…...
webid、sec_poison_id、a1、web_session参数分析与算法实现
文章目录 1. 写在前面2. 参数分析3. 核心算法【🏠作者主页】:吴秋霖 【💼作者介绍】:擅长爬虫与JS加密逆向分析!Python领域优质创作者、CSDN博客专家、阿里云博客专家、华为云享专家。一路走来长期坚守并致力于Python与爬虫领域研究与开发工作! 【🌟作者推荐】:对爬…...
Qt|QWebSocket与Web进行通讯,实时接收语音流
实现功能主要思路:在网页端进行语音输入,PC机可以实时接收并播放语音流。 此时,Qt程序做客户端,Web端做服务器,使用QWebSocket进行通讯,实时播放接收的语音流。 功能实现 想要实现该功能,需要…...

「51媒体」电视台媒体邀约采访报道怎么做?
传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 电视台作为地方主流媒体,对于新闻报道有着严格的选题标准和报道流程。如果您希望电视台对某个会议或活动进行报道,可以按这样的方法来做: 1.明确活动信…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

HBuilderX安装(uni-app和小程序开发)
下载HBuilderX 访问官方网站:https://www.dcloud.io/hbuilderx.html 根据您的操作系统选择合适版本: Windows版(推荐下载标准版) Windows系统安装步骤 运行安装程序: 双击下载的.exe安装文件 如果出现安全提示&…...
Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理
引言 Bitmap(位图)是Android应用内存占用的“头号杀手”。一张1080P(1920x1080)的图片以ARGB_8888格式加载时,内存占用高达8MB(192010804字节)。据统计,超过60%的应用OOM崩溃与Bitm…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
Bean 作用域有哪些?如何答出技术深度?
导语: Spring 面试绕不开 Bean 的作用域问题,这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开,结合典型面试题及实战场景,帮你厘清重点,打破模板式回答,…...

CTF show 数学不及格
拿到题目先查一下壳,看一下信息 发现是一个ELF文件,64位的 用IDA Pro 64 打开这个文件 然后点击F5进行伪代码转换 可以看到有五个if判断,第一个argc ! 5这个判断并没有起太大作用,主要是下面四个if判断 根据题目…...
Netty自定义协议解析
目录 自定义协议设计 实现消息解码器 实现消息编码器 自定义消息对象 配置ChannelPipeline Netty提供了强大的编解码器抽象基类,这些基类能够帮助开发者快速实现自定义协议的解析。 自定义协议设计 在实现自定义协议解析之前,需要明确协议的具体格式。例如,一个简单的…...