当前位置: 首页 > news >正文

华为---OSPF被动接口配置(四)

9.4 OSPF被动接口配置

9.4.1 原理概述

OSPF被动接口也称抑制接口,成为被动接口后,将不会接收和发送OSPF报文。如果要使OSPF路由信息不被某一网络中的路由器获得且使本地路由器不接收网络中其他路由器发布的路由更新信息,即已运行在OSPF协议进程中的接口不与本链路上其余路由器建立邻居关系时,可通过配置被动接口来禁止此接口接收和发送OSPF报文。

9.4.2 实验内容

本实验模拟企业网络场景。有路由器R1、R2、R4与R5分属不同部门的网关设备,每台设备都连接着各部门的员工终端,公司整网运行OSPF协议,并都处于区域0中。员工终端上经常收到路由器发送的OSPF数据报文,而该报文对终端而言毫无用处,还占用了一定的链路带宽资源,并有可能引起安全风险,比如非法接入路由器做路由欺骗。现通告配置被动接口来实现阻隔OSPF报文,优化公司网络。

9.4.3 实验拓扑

在这里插入图片描述

9.4.4 实验编址

设备接口IP地址子网掩码默认网关
AR1(AR2220)GE 0/0/0172.16.1.1255.255.255.0N/A
AR1(AR2220)GE 0/0/2192.168.30.254255.255.255.0N/A
AR2(AR2220)GE 0/0/1172.16.2.1255.255.255.0N/A
AR2(AR2220)GE 0/0/2192.168.40.254255.255.255.0N/A
AR3(AR2220)GE 0/0/0172.16.1.2255.255.255.0N/A
AR3(AR2220)GE 0/0/1172.16.2.2255.255.255.0N/A
AR3(AR2220)GE 0/0/2172.16.3.2255.255.255.0N/A
AR4(AR2220)GE 0/0/1172.16.3.1255.255.255.0N/A
AR4(AR2220)GE 0/0/2192.168.10.254255.255.255.0N/A
AR5(AR2220)GE 0/0/0172.16.3.3255.255.255.0N/A
AR5(AR2220)GE 0/0/2192.168.20.254255.255.255.0N/A
PC1Ethernet 0/0/1192.168.10.1255.255.255.0192.168.10.254
PC2Ethernet 0/0/1192.168.20.1255.255.255.0192.168.20.254
PC3Ethernet 0/0/1192.168.30.1255.255.255.0192.168.30.254
PC4Ethernet 0/0/1192.168.40.1255.255.255.0192.168.40.254

9.4.5 实验步骤

1、基本配置并搭建OSPF网络

根据实验编址表进行基本的配置和配置OSPF网络,并进行连通性测试。

[AR1]interface GigabitEthernet 0/0/0
[AR1-GigabitEthernet0/0/0]ip address 172.16.1.1 24
[AR1-GigabitEthernet0/0/0]interface GigabitEthernet 0/0/2
[AR1-GigabitEthernet0/0/2]ip address 192.168.30.254 24
[AR1-GigabitEthernet0/0/2]ospf 1
[AR1-ospf-1]area 0
[AR1-ospf-1-area-0.0.0.0]network 172.16.1.0 0.0.0.255
[AR1-ospf-1-area-0.0.0.0]network 172.16.30.0 0.0.0.255[AR2]interface GigabitEthernet 0/0/1
[AR2-GigabitEthernet0/0/1]ip address 172.16.2.1 24
[AR2-GigabitEthernet0/0/1]interface GigabitEthernet 0/0/2
[AR2-GigabitEthernet0/0/2]ip address 192.168.40.254 24
[AR2-GigabitEthernet0/0/2]ospf 1
[AR2-ospf-1]area 0
[AR2-ospf-1-area-0.0.0.0]network 172.16.2.0 0.0.0.255
[AR2-ospf-1-area-0.0.0.0]network 192.168.40.0 0.0.0.255[AR3]interface GigabitEthernet 0/0/0
[AR3-GigabitEthernet0/0/0]ip address 172.16.1.2 24
[AR3-GigabitEthernet0/0/0]interface GigabitEthernet 0/0/1
[AR3-GigabitEthernet0/0/1]ip address 172.16.2.2 24
[AR3-GigabitEthernet0/0/1]interface GigabitEthernet 0/0/2
[AR3-GigabitEthernet0/0/2]ip address 172.16.3.2 24
[AR3-GigabitEthernet0/0/2]ospf 1
[AR3-ospf-1]area 0
[AR3-ospf-1-area-0.0.0.0]network 172.16.1.0 0.0.0.255
[AR3-ospf-1-area-0.0.0.0]network 172.16.2.0 0.0.0.255
[AR3-ospf-1-area-0.0.0.0]network 172.16.3.0 0.0.0.255[AR4]interface GigabitEthernet 0/0/1
[AR4-GigabitEthernet0/0/1]ip address 172.16.3.1 24
[AR4-GigabitEthernet0/0/1]interface GigabitEthernet 0/0/2
[AR4-GigabitEthernet0/0/2]ip address 192.168.10.254 24
[AR4-GigabitEthernet0/0/2]ospf 1
[AR4-ospf-1]area 0
[AR4-ospf-1-area-0.0.0.0]network 172.16.3.0 0.0.0.255
[AR4-ospf-1-area-0.0.0.0]network 192.168.10.0 0.0.0.255[AR5]interface GigabitEthernet 0/0/0
[AR5-GigabitEthernet0/0/0]ip address 172.16.3.3 24
[AR5-GigabitEthernet0/0/0]interface GigabitEthernet 0/0/2
[AR5-GigabitEthernet0/0/2]ip address 192.168.20.254 24
[AR5-GigabitEthernet0/0/2]ospf 1
[AR5-ospf-1]area 0
[AR5-ospf-1-area-0.0.0.0]network 172.16.3.0 0.0.0.255
[AR5-ospf-1-area-0.0.0.0]network 192.168.20.0 0.0.0.255
PC1>ping 192.168.40.1
Ping 192.168.40.1: 32 data bytes, Press Ctrl_C to break
Request timeout!
From 192.168.40.1: bytes=32 seq=2 ttl=125 time=78 ms
From 192.168.40.1: bytes=32 seq=3 ttl=125 time=32 ms
From 192.168.40.1: bytes=32 seq=4 ttl=125 time=47 ms
From 192.168.40.1: bytes=32 seq=5 ttl=125 time=46 ms
--- 192.168.40.1 ping statistics ---5 packet(s) transmitted4 packet(s) received20.00% packet lossround-trip min/avg/max = 0/50/78 ms
2、配置被动接口

现在通过配置被动接口来优化连接终端的网络,使终端不在收到任何OSPF报文,在R4的OSPF进程中,使用silent-interface命令禁止接口接收和转发OSPF报文。

[AR1]ospf 1
[AR1-ospf-1]silent-interface GigabitEthernet 0/0/2[AR2]ospf 1
[AR2-ospf-1]silent-interface GigabitEthernet 0/0/2[AR4]ospf 1
[AR4-ospf-1]silent-interface GigabitEthernet 0/0/2[AR5]ospf 1
[AR5-ospf-1]silent-interface GigabitEthernet 0/0/2
3、验证被动接口

配置被动接口,该接口会禁止接收和发送OSPF报文,固在两台路由器间OSPF链路的接口上做该配置,会导致OSPF邻居无法建立。

在R1上面使用display ip routing-table命令查看其他路由器上面的被动接口的网段路由条目是否获取到。

[AR1]display ip routing-table
Route Flags: R - relay, D - download to fib
------------------------------------------------------------------------------
Routing Tables: PublicDestinations : 15       Routes : 15       
Destination/Mask    Proto   Pre  Cost      Flags NextHop         Interface127.0.0.0/8   Direct  0    0           D   127.0.0.1       InLoopBack0127.0.0.1/32  Direct  0    0           D   127.0.0.1       InLoopBack0
127.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0172.16.1.0/24  Direct  0    0           D   172.16.1.1      GigabitEthernet0/0/0172.16.1.1/32  Direct  0    0           D   127.0.0.1       GigabitEthernet0/0/0172.16.1.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet0/0/0172.16.2.0/24  OSPF    10   2           D   172.16.1.2      GigabitEthernet0/0/0172.16.3.0/24  OSPF    10   2           D   172.16.1.2      GigabitEthernet0/0/0192.168.10.0/24  OSPF    10   3           D   172.16.1.2      GigabitEthernet0/0/0192.168.20.0/24  OSPF    10   3           D   172.16.1.2      GigabitEthernet0/0/0192.168.30.0/24  Direct  0    0           D   192.168.30.254  GigabitEthernet0/0/2192.168.30.254/32  Direct  0    0           D   127.0.0.1       GigabitEthernet0/0/2192.168.30.255/32  Direct  0    0           D   127.0.0.1       GigabitEthernet0/0/2192.168.40.0/24  OSPF    10   3           D   172.16.1.2      GigabitEthernet0/0/0
255.255.255.255/32  Direct  0    0           D   127.0.0.1       InLoopBack0

可以观察到,此时其他邻居路由器任然可以收到该网段的路由条目,被动接口的特性只是不在收发任何OSPF报文,但是被动接口所在网段的直连路由条目如果已经在OSPF中通告,那么也会被其他的OSPF邻居路由器接收到。测试pc1和pc4的连通性,可以看到可以正常通信。

PC1>ping 192.168.40.1
Ping 192.168.40.1: 32 data bytes, Press Ctrl_C to break
Request timeout!
From 192.168.40.1: bytes=32 seq=2 ttl=125 time=47 ms
From 192.168.40.1: bytes=32 seq=3 ttl=125 time=32 ms
From 192.168.40.1: bytes=32 seq=4 ttl=125 time=46 ms
From 192.168.40.1: bytes=32 seq=5 ttl=125 time=47 ms
--- 192.168.40.1 ping statistics ---5 packet(s) transmitted4 packet(s) received20.00% packet lossround-trip min/avg/max = 0/43/47 ms

相关文章:

华为---OSPF被动接口配置(四)

9.4 OSPF被动接口配置 9.4.1 原理概述 OSPF被动接口也称抑制接口,成为被动接口后,将不会接收和发送OSPF报文。如果要使OSPF路由信息不被某一网络中的路由器获得且使本地路由器不接收网络中其他路由器发布的路由更新信息,即已运行在OSPF协议…...

前端将Markdown文本转换为富文本显示/编辑,并保存为word文件

参考:https://www.wangeditor.com/ https://blog.csdn.net/weixin_43797577/article/details/138854324 插件: markdown-it traptitech/markdown-it-katex markdown-it-link-attributes highlight.js wangeditor/editor wangeditor/editor-for-vue html…...

git-shortlog详解

作用 git-shortlog - Summarize git log output 语法 git shortlog [<options>] [<revision-range>] [[--] <path>…​] git log --prettyshort | git shortlog [<options>] 功能描述 Summarizes git log output in a format suitable for inclus…...

通过MATLAB实现PID控制器,积分分离控制器以及滑模控制器

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 通过MATLAB实现PID控制器,积分分离控制器以及滑模控制器。通过对比三个算法可知&#xff0c;采用滑模控制算法&#xff0c;其具有最快的收敛性能&#xff0c;较强的鲁棒性&…...

Node.js 渲染三维模型并导出为图片

Node.js 渲染三维模型并导出为图片 1. 前言 本文将介绍如何在 Node.js 中使用 Three.js 进行 3D 模型渲染。通过结合 gl 和 canvas 这两个主要依赖库&#xff0c;我们能够在服务器端实现高效的 3D 渲染。这个方法解决了在服务器端生成和处理 3D 图形的需求&#xff0c;使得可…...

Win11下安装VS2022失败的解决办法

前几天我把我的HP Z840的操作系统换成了Win11&#xff0c;在重装VS2022时遇到了麻烦&#xff0c;提示无法安装 Microsoft.VisualStudio.Devenv.Msi。 查看安装日志提示&#xff1a;Could not write value devenv.exe to key \SOFTWARE\Microsoft\Internet Explorer\Main\Featur…...

动态规划:基本概念

Dynamic Programming 动态规划&#xff08;Dynamic Programming, DP&#xff09; 是一种算法设计技巧&#xff0c;通常用来解决具有重叠子问题和最优子结构性质的问题。它通过将问题分解为更小的子问题&#xff0c;逐步解决这些子问题并将结果存储起来&#xff0c;以避免重复计…...

小山菌_代码随想录算法训练营第二十九天| 455. 分发饼干 、376. 摆动序列、53. 最大子序和

455. 分发饼干 文档讲解&#xff1a;代码随想录.分发饼干 视频讲解&#xff1a;贪心算法&#xff0c;你想先喂哪个小孩&#xff1f;| LeetCode&#xff1a;455.分发饼干 状态&#xff1a;已完成 代码实现 class Solution { public:int findContentChildren(vector<int>&…...

快手可灵大模型开放视频续写功能,可生成最长约3分钟视频

6月21日&#xff0c;可灵再度进化&#xff0c;正式推出图生视频功能&#xff0c;支持用任意静态图像生成5s视频&#xff0c;并且可搭配不同的文本内容&#xff0c;实现丰富的视觉叙事 。 同时&#xff0c;可灵还发布了业内领先的视频续写功能&#xff0c;可为已生成的视频&…...

【代码随想录】【算法训练营】【第45天】 [198]打家劫舍 [213]打家劫舍II [337]打家劫舍III

前言 思路及算法思维&#xff0c;指路 代码随想录。 题目来自 LeetCode。 day 45&#xff0c;周五&#xff0c;坚持不了一点~ 题目详情 [198] 打家劫舍 题目描述 198 打家劫舍 解题思路 前提&#xff1a; 思路&#xff1a; 重点&#xff1a; 代码实现 C语言 虚拟头…...

python安装目录文件说明----Dlls文件夹

在Python的安装目录下&#xff0c;通常会有一个DLLs文件夹&#xff0c;它是Python标准库的一部分。这个文件夹包含了一些动态链接库&#xff08;Dynamic Link Libraries&#xff0c;DLL&#xff09;&#xff0c;这些库提供了Python解释器和标准库的一些关键功能。以下是对这个文…...

java实现持续集成

要使用Java实现Jenkins持续集成&#xff0c;你可以使用Jenkins的Java客户端库来执行一些常见的操作&#xff0c;例如创建任务&#xff0c;触发构建等。下面是一个简单的示例代码&#xff0c;展示了如何使用Java实现Jenkins持续集成&#xff1a; java import com.offbytwo.jenk…...

ClickHouse安装与下载22.3.2.2

ClickHouse安装与下载 目录 1. ClickHouse简介 1.1 ClickHouse优点&#xff1a; 1.2 ClickHouse缺点&#xff1a; 1.3 ClickHouse引擎&#xff1a; 1.3.1 数据库引擎 1.3.2 表引擎 2. ClickHouse下载安装 2.1 ClickHouse下载安装 2.2 ClickHouse使用 1. ClickHouse简…...

【Go语言】Gin 框架教程

Gin 框架教程 1.第一个 Gin 程序 1.1 Gin 安装 # 执行执行如下操作即可&#xff0c;安装Gin前需要安装Go环境 go get -u -v github.com/gin-gonic/gin # -v&#xff1a;打印出被构建的代码包的名字 # -u&#xff1a;已存在相关的代码包&#xff0c;强行更新代码包及其依赖包…...

MySQL性能问题诊断方法和常用工具

作者介绍&#xff1a;老苏&#xff0c;10余年DBA工作运维经验&#xff0c;擅长Oracle、MySQL、PG数据库运维&#xff08;如安装迁移&#xff0c;性能优化、故障应急处理等&#xff09; 公众号&#xff1a;老苏畅谈运维 欢迎关注本人公众号&#xff0c;更多精彩与您分享。MySQL运…...

CGFloat转NSString保持原有的精度,末尾不添加0

问题阐述&#xff1a; 我们进行CGFloat转NSString可能会遇到一个问题 例如有一个CGFloat的值为2.1&#xff0c;转化成NSString后显示2.1000... 解决办法&#xff1a; 方法一&#xff1a; 如何解决呢&#xff0c;可以使用%g格式符&#xff0c;可以保证传入的不管是2还是2.1…...

UDS服务——TransferData (0x36)

诊断协议那些事儿 诊断协议那些事儿专栏系列文章,本文介绍TransferData (0x36)—— 数据传输,用于下载/上传数据时用的,数据的传输方向由不同的服务控制:0x34服务表示下载,0x35服务表示上传。通过阅读本文,希望能对你有所帮助。 文章目录 诊断协议那些事儿传输数据服务…...

jQuery 基本操作

01-简介 jQuery 是一个功能丰富且广泛使用的 JavaScript 库&#xff0c;它简化了 HTML 文档遍历和操作、事件处理、动画和 Ajax 操作。jQuery 通过其易用的 API&#xff0c;使复杂的 JavaScript 编程任务变得更加简单&#xff0c;并且兼容各种浏览器。 1、jQuery特点 简化 DOM …...

有玩家在2011年的MacBook上成功运行了Windows XP 还安装了触摸屏

我们已经在许多不同的设备上看到过 Windows XP 正在运行。这个古老的操作系统于 2001 年正式推出&#xff0c;现在已经老到其最后一次软件更新是在近十年前。一位好奇的玩家试图在 2011 年的触摸屏 MacBook 上为 Windows XP 打造了一个新家&#xff0c;复古技术探索者 Michael …...

高纯PFA容量瓶PFA试剂瓶在半导体材料的应用

在半导体生产过程中&#xff0c;为避免金属污染对硅器件性能造成不利影响&#xff0c;碳化硅产业链不同阶段产品&#xff08;如衬底、外延、芯片、器件&#xff09;表面的痕量杂质元素浓度表征至关重要。 在实验人员使用质谱法高精度检测第三代半导体碳化硅材料的痕量杂质浓度…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战&#xff1a;腾讯云IM群组成员管理&#xff08;增删改查&#xff09; 一、前言 在社交类App开发中&#xff0c;群组成员管理是核心功能之一。本文将基于UniApp框架&#xff0c;结合腾讯云IM SDK&#xff0c;详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...