电商平台生活用品销售数据分析与应用
摘 要
在当前互联网飞速发展的时代,计算机应用给我们的工作生活带来了极大的便利。如今我们的生活离不开电商平台,其随之而来的是各种各样的销售数据与消费者信息,这些数据和信息的分析应用成为了当前互联网领域研究的重要部分。
本论文以基于Python的电商平台生活用品销售数据分析与应用为研究主题。采用了流行的Python Web框架Django,使得系统易于扩展和维护。在数据获取方面,采用爬虫技术获取淘宝的销售数据,并将这些数据储存在MySQL数据库中,用于后续的数据处理分析,以便为商家提供决策依据。在数据展示上,选用HTML、CSS、JS等构建前端页面,同时利用了Bootstrap框架及Echarts图进行数据的可视化展示,提供了极佳的用户体验。
本文详细研究了销售数据分析与预测的过程。通过Python编写了爬虫程序,对淘宝上的生活用品销售数据进行了抓取。再运用了随机森林回归算法来预测销售额,从而为商家提供了科学的决策依据。总而言之,整合运用了多种技术和方法,来达到帮助商家提升销售预测、决策水平的目的。
关键词:Bootstrap;Mysql;Django;Echarts
3.2功能需求
3.2.1 数据收集
数据源来自淘宝网站。淘宝网站上有丰富的关于生活用品销售信息的数据,因此选择爬取淘宝网的数据。
数据采集方式:Python的Selenium库被用来进行自动化Web浏览器操作采集数据,并实时获取数据。
数据获取频率:由于数据来源于淘宝平台,其更新频率较高,因此设定的采集频率为每30秒爬取一页数据,以适应数据的实时变动。根据实际商品数量和销售频率的变动,收集的销售数据原始大小会有所不同,经过数据清洗选后,将适量的数据保存到了MySQL数据库中,这些数据会被用于后续的模型测试和数据分析。
数据格式和结构:销售数据主要以数字类型为主,商品相关的字段则使用文本方式存储,这不仅有助于减少存储空间,也便于进行数据处理与可视化分析。
通过对数据收集的功能需求进行分析和定义,可以确保数据采集过程的顺利进行,并为后续的数据处理和分析提供高质量的数据基础。
3.2.2 数据整理与选择
数据清洗和预处理:数据清洗的代码主要工作是对淘宝销售数据进行清洗和预处理,其中一个重要步骤是把相对日期(如’3天前’、‘2月前’)转化为真实日期。在连接MySQL数据库后,对“xitong_comments”表中的“id”和“createtime”字段进行处理,若日期存在,就进行日期转换。同时,为确保数据质量,还进行了重复值处理和缺失值处理,这为后续模型训练提供了重要基础。
特征工程:其中使用XGBoost方法计算特征与模型之间的关系,并根据数据特性选择合适的特征嵌入到适当的模型进行训练,有效地提升了模型的准确性、精度、可靠性和稳定性。
3.2.3 数据展示
数据展示的主要任务是从数据库提取数据,进一步分析并进行可视化展示。
连接并查询MySQL数据库后,代码抓取了数据表中的相应数据,并进行了分词。然后,使用jieba库抽取了关键词。
展示了数据可视化的重要几步:首先是数据收集和预处理;接着是数据的汇总和聚合;最后是数据的可视化和评估,包括生成柱状图、折线图。
具体到可视化,利用了pyecharts库来创建词云、柱状图和折线图等多种图表类型。也应用了数据筛选和过滤,以便选择合适的关键词作为词云的内容,计算得到不同种类商品的销售量作为柱状图和折线图的数据。同时,数据的汇总与聚合也是必不可少的一步。此外,这个过程还展示了如何使用可视化工具来展示多维数据,比如柱状图展示了商品名称与其对应的销量的关系。最后,使用了结果的评估和可视化,这里提供了直观的可视化图表来评估各种生活用品对应的销量的变化。
3.2.4 数据预测
数据预测主要完成了数据采集、清洗、转换、特征提取、训练模型以及结果可视化几个步骤。
首先,读取原始数据,并对数据进行初步的清洗处理,包括缺失值分析、删除含有过多缺失值的列、删除重复行等,然后将处理后的数据导入数据库中。
其次,对销售额进行清洗和转换,将销售量从字符串格式转为整数。并通过相应的计算得到GMV(商品交易总额),作为后续分析的重要特征。
然后,分词并剔除停用词,得到干净的标题数据,进一步进行关键词提取和统计。并且,对标题中各个关键词对应的销售总量进行统计分析,并进行可视化展示。
同时还通过随机森林模型对GMV进行预测分析。在这个过程中,首先对商品价格和销量数据进行标准化处理,然后将数据集分为训练集和测试集,使用网格搜索法寻找最优参数并训练随机森林模型。最终,对模型的预测结果进行可视化展示,并输出模型的均方误差,评估模型的性能。
这个过程展示了数据集成、预处理、特征抽取与建模等关键步骤,以及数据可视化的重要性。这些步骤和技术的结合,有助于提供对预测结果的理解和评估,使得结果更具解释性和应用价值。
3.2.5用例图
用例图可以了解商品销售数据处理的步骤和方法,如图3-1所示。

4.5数据分析与可视化
4.5.1商品销售数据分析与可视化
首先,通过连接MySQL数据库,提取xitong_productdata表中所有记录的shop和sales字段,然后使用正则表达式从sales字段中提取数字,并依据shop字段(也就是商品名称)累计各个商品的总销售量。
然后,使用Pyecharts库创建并渲染柱状图,其中横轴为商品名称,纵轴为销售量,以直观地展示各商品的销售情况。
以下是商品销售数据可视化部分代码:
top20_sales = data.sort_values('sales', ascending=False).head(20)
echarts_bar_top20 = (Bar().add_xaxis(top20_sales.productname.tolist()).add_yaxis("销量", top20_sales.sales.tolist()).set_global_opts(title_opts=opts.TitleOpts(title="销量前20的商品"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-45)),yaxis_opts=opts.AxisOpts(name="销量")).render("E:\\python\\电商平台生活用品销售数据分析与应用\\xitong\\templates\\xitong\\keyword_sales_analysis.html")
)echarts_bar = (Bar().add_xaxis(df_w_s.word.tolist()).add_yaxis("销量之和", df_w_s.w_s_sum.tolist()).set_global_opts(title_opts=opts.TitleOpts(title="关键词销量之和分析"),xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-45)),datazoom_opts=opts.DataZoomOpts()).render("xitong/templates/xitong/keyword_sales_analysis.html")
)
根据代码得到商品销售数据柱状图,如图4-6所示:

(图4-6数值解释:由于淘宝平台未对商品销量的具体数值进行公开,故不能爬取到商品销量的具体数值,因此在可视化展示时,结果显示的1000代表销量为1000+,即商品的真实销量大于1000,其他数值同理。)
图4-6呈现的是商品销售数据柱状图,其中横轴代表各种生活用品的名称,纵轴代表与其对应的销量。结合图4-6分析可以得出:在淘宝这个电商平台中,销量较高的生活用品为:厨房用品、浴室毛巾、一次性纸杯、收纳盒及一些低价的小礼品等。因此商家可以考虑对这几类销量较高的商品更多的进货,以此获得更多的利润。




由于时间有限,没有细描述。如需要参考,可以联系!下方有联系方式!
相关文章:
电商平台生活用品销售数据分析与应用
摘 要 在当前互联网飞速发展的时代,计算机应用给我们的工作生活带来了极大的便利。如今我们的生活离不开电商平台,其随之而来的是各种各样的销售数据与消费者信息,这些数据和信息的分析应用成为了当前互联网领域研究的重要部分。 本论文以基…...
FastAdmin数据库设计规范
FastAdmin数据库设计规范,官方文档上也有,仅仅是为了我自己做一次笔记增加记忆强度 表名和字段名全小写,只允许出现a-z和_这几种字符,且不能有拼音,只能为英文单词存储引擎统一使用innodb引擎字符集统一使用utf8mb4,排序规则使用…...
基于MATLAB仿真LFM线性调频信号
基于MATLAB仿真LFM线性调频信号 目录 前言 一、LFM信号简介 二、LFM信号基本原理 三、LFM信号仿真 四、代码 总结 前言 仿真中的接收信号,有时为了简单会直接用一个正弦波代替,但实际中接收到的信号极少是点频信号,一般都是PSK信号、OF…...
互联网的盈利模式
1. 广告收入 展示广告:通过在网站或应用上展示横幅广告、视频广告等,按点击次数(CPC)或展示次数(CPM)收费。搜索广告:通过搜索引擎上的关键词竞价广告,按点击次数收费。社交媒体广告…...
什么是距离选通型水下三维激光扫描仪?(下)
距离选通激光水下成像的发展 距离选通激光成像技术始于上世纪60年代,受制于高性能脉冲激光器和选通成像器件发展的制约,激光距离选通成像技术在随后的二十年发展缓慢,直到20世纪90年代,随着硬件技术的不断成熟,该技术…...
计算机网络(谢希仁第六版)| 课后习题与答案 | 物理层 | 题目知识点详细分析
计算机网络(谢希仁第六版)课后习题与答案 物理层 博客只对老师给的重点进行整理,完整的课后习题答案见Gitee下载:《计算机网络教程(第6版)(微课版)》习题答案 2-5 请画出数据流1 0 1…...
安卓安装linux + .net环境
安装Termux 到下面地址获取apk安装包 https://github.com/termux/termux-app 安装ssh ~ $ pkg install openssl ~ $ pkg install openssh查看用户名 ~ $ whoami ssh u0_a390修改当前用户密码 passwd 启动ssh sshd 安装 proot-distro pkg install proot-distro 列出能装的lin…...
ES6 新增Set 和 Map 两种数据结构
ES6 新增了 Set 和 Map 这两种数据结构,它们为 JavaScript 提供了更强大和灵活的数据处理能力。下面详细介绍一下 Set 和 Map 的特性和用法: Set Set 是一种类似于数组的数据结构,但是成员的值都是唯一的,没有重复的值。 特性&…...
【学一点儿前端】单页面点击前进或后退按钮导致的内存泄露问题(history.listen监听器清除)
今天测试分配了一个比较奇怪的问题,在单页面应用中,反复点击“上一步”和“下一步”按钮时,界面表现出逐渐变得卡顿。为分析这一问题,我用Chrome的性能监控工具进行了浏览器性能录制。结果显示,每次点击“上一步”按钮…...
vue跳转页面 如果登录了直接跳转 没有登录登录完以后直接跳转,使用vuex管理登录状态
在Vue.js中,如果你需要在用户登录后重定向到他们原本想要访问的页面,你可以使用Vue Router的beforeEach守卫来实现这个功能。以下是实现这一需求的步骤: 存储目标路由:在用户被重定向到登录页面之前,存储他们想要访问的…...
渗透测试-若依框架的杀猪交易所系统管理后台
前言 这次是带着摸鱼的情况下简单的写一篇文章,由于我喜欢探究黑灰产业,所以偶尔机遇下找到了一个加密H币的交易所S猪盘,我记得印象是上年的时候就打过这一个同样的站,然后我是通过指纹查找其它的一些站,那个站已经关…...
【免费】中国电子学会2024年03月份青少年软件编程Python等级考试试卷一级真题(含答案)
2024-03 Python一级真题 分数:100 题数:37 测试时长:60min 一、单选题(共25题,共50分) 1. 下列哪个命令,可以将2024转换成2024 呢?( A)(2分) A.str(2024) B.int(2024) C.fl…...
深入了解RTMP推流技术:视频汇聚EasyCVR低延迟与高稳定性分析
RTMP(Real Time Messaging Protocol)视频推流技术,作为音视频传输领域的关键技术之一,已经在直播、视频会议、在线教育等多个场景中得到了广泛应用。RTMP以其独特的优势,为实时音视频传输提供了高效、稳定的解决方案。…...
containerd手动配置容器网络
containerd手动配置容器网络 机器详情nerdctl启动一个不带网络的容器获取容器ID、PID与network namespace路径准备bridge插件的执行配置文件通过下面的命令调用bridge插件准备tuning插件文件执行下面的命令调用tuning插件准备portmap插件文件执行下面的命令调用portmap插件删除…...
数据迁移到 Django 模型表:详尽指南
数据迁移是许多应用程序开发过程中必不可少的一部分。在这篇文章中,我们将详细分析和总结如何通过一个定制的 Django 管理命令,将数据从 MySQL 数据库迁移到 Django 模型表中。这种方法可以确保数据在多个数据库之间有效且安全地迁移,同时避免…...
代码随想三刷二叉树篇4
代码随想三刷二叉树篇4 617. 合并二叉树题目代码 700. 二叉搜索树中的搜索题目代码 98. 验证二叉搜索树题目代码 530. 二叉搜索树的最小绝对差题目代码 501. 二叉搜索树中的众数题目代码 236. 二叉树的最近公共祖先题目代码 617. 合并二叉树 题目 链接 代码 /*** Definitio…...
『大模型笔记』如何让小型语言模型发挥作用!
如何让小型语言模型发挥作用! 文章目录 一. 如何让小型语言模型发挥作用!不可能的可能性小模型的潜力创新方法与突破实践与验证过滤系统与数据质量小模型的逐步改进信息理论蒸馏方法(新工作InfoSum)总结与展望Infini-Gram与N-gram模型的新时代后缀数组与高速计算二. 参考文献…...
jnp.diag
jnp.diag 是 JAX 库中用于创建对角矩阵或提取对角线元素的函数。具体功能取决于输入的形状: 当输入是一维数组时,jnp.diag 创建一个以该数组为对角线元素的对角矩阵。当输入是二维数组时,jnp.diag 提取并返回对角线元素。 函数签名 jnp.di…...
bert文本分类微调笔记
Bert实现文本分类微调Demo import random from collections import namedtuple 有四种文本需要做分类,请使用bert处理这个分类问题 # 使用namedtuple定义一个类别(Category),包含两个字段:名称(name)和样例(samples) Category namedtuple(Ca…...
运维:k8s常用命令大全
Kubernetes是一个强大的容器编排平台,不管是运维、开发还是测试或多或少都会接触到,熟练的掌握k8s可大大提高工作效率和强化自身技能。 集群管理 1. 查看集群节点状态: kubectl get nodes 2. 查看集群资源使用情况: kubectl top nodes 3. 查看集群…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
linux 错误码总结
1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
