OpenCV 特征点检测与匹配
一 OpenCV特征场景
①图像搜索,如以图搜图;
②拼图游戏;
③图像拼接,将两长有关联得图拼接到一起;
1 拼图方法
寻找特征
特征是唯一的
可追踪的
能比较的
二 角点
在特征中最重要的是角点
灰度剃度的最大值对应的像素
两条线的角点
极值点(一阶导数最大值,但二阶导数为0)
三 Harris角点
哈里斯角点检测

Harris点
① 光滑地区,无论向哪里移动,衡量系数不变;
②边缘地址,垂直边缘移动时,衡量系统变换剧烈;
③在交点处,往哪个方向移动,衡量系统都变化剧烈;
1 Harris角点检测API
cornerHarris(img,dst,blockSize,ksize,k)
blockSize:检测窗口大小
ksize:Sobel的卷积核
k:权重系数,经验值,一般取0.02~0.04之间。
import cv2
import numpy as npblockSize=2ksize=1k=0.04img=cv2.imread('chess.jpg')#灰度化
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#Harris角点检测
dst=cv2.cornerHarris(gray,blockSize,ksize,k)#Harris角点的展示
img[dst>0.04*dst.max()]=[0,0,255]
cv2.imshow('img',img)
cv2.waitKey(0)
四 Shi_Tomasi交点检测
Shi-Tomasi是Harris角点检测的改进;
Harris角点检测的稳定性和K有关,而k是个经验值,不好设定最佳值。
1 Shi-Tomasi角点检测API
goodFeaturesToTrack(img,maxCorners,...)
maxCorners:角点的最大数,值为0表示无限制
qualityLevel:小于1.0的正数,一般在0.01~0.1之间
minDistance:角之间最小欧式距离,忽略小于此距离的点。
mask:感兴趣的区域
blockSize:检测窗口
useHarrisDetector:是否使用Harris算法
k:默认是0.04
import cv2
import numpy as npmaxCorners=100
ql=0.01img=cv2.imread('./chess.jpg')
cv2.imshow('img',img)
#灰度化
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)# Shi-Tomasi
corners=cv2.goodFeaturesToTrack(gray,maxCorners,ql,10)
print(corners)
corners=np.int32(corners)
# Shi-Tomasi绘制角点
for i in corners:x,y=i.ravel()cv2.circle(img,(x,y),3,(255,0,0),-1)cv2.imshow('img',img)
cv2.waitKey(0)
五 SIFT(Scale-Invariant Feature Transform)
SIFT出现的原因:
harris 角点具有旋转不变的特性;
但缩放后,原来的角点有可能就不是角点了;
图放大

使用SIFT的步骤
①创建SIFT对象
②进行检测,kp=sift.detect(img,…)
③绘制关键点,drawKeypoints(gray,kp,img)
from email.mime import imageimport cv2
import numpy as npimg=cv2.imread('./chess.jpg')gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)sift=cv2.xfeatures2d.SIFT_create()kp=sift.detect(gray,None)cv2.drawKeypoints(gray,kp,img)cv2.imshow('img',img)
cv2.waitKey(0)

六 SIFT计算描述子
关键点和描述子
关键点:位置,大小和方向
关键点描述子:记录了关键点周围对其有贡献的像素点的一组向量值,其不受仿射变换、光照变换等影响。
计算描述子
kp,des=sift.compute(img,kp)
其作用是进行特征匹配
同时计算关键点和描述
kp,des=sift.detectAndCompute(img,...)
mask:指明对img中哪个区域进行计算
import cv2
import numpy as npimg=cv2.imread('./chess.jpg')gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)sift=cv2.xfeatures2d.SIFT_create()kp,des=sift.detectAndCompute(gray,None)
print(des)
cv2.drawKeypoints(gray,kp,img)cv2.imshow('img',img)
cv2.waitKey(0)

七 SURF特征检测
SURF的优点
SIFT最大的问题是速度慢,因此才有SURF
使用SURF的步骤
surf=cv2.xfeatures2d.SUFR_create()
kp,des=surf.detectAndCompute(img,mask)
import cv2
import numpy as npimg=cv2.imread('./chess.jpg')gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)surf=cv2.xfeatures2d.SURF_create()kp,des=surf.detectAndCompute(gray,None)print(des[0])cv2.drawKeypoints(gray,kp,img)cv2.imshow('img',img)
cv2.waitKey(0)
八 ORB(Oriented FAST and Rotated BRIEF)特征检测
1 ORB 优势
①ORB可以做到实时检测
②ORB=Oriented FAST+Rotated BRIEF
2 FAST
可以做到特征点的实时检测
3 BRIEF
BRIEF是对已检测到的特征点进行描述,它加快了特征描述符建立的速度。同时也极大的降低了特征匹配的时间。
3 ORB使用步骤
orb=cv2.ORB_create()
kp,des=orb.detectAndCompute(img,mask)
import cv2
import numpy as npimg=cv2.imread('./chess.jpg')gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)orb=cv2.ORB_create()kp,des=orb.detectAndCompute(gray,None)cv2.drawKeypoints(gray,kp,img)cv2.imshow('img',img)
cv2.waitKey(0)

九 暴力特征匹配
1 特征匹配方法
①BF(Brute-Force),暴力特征匹配方法;
②FLANN最快邻近区特征匹配方法;
它使用第一组中的每个特征的描述子与第二组中的所有特征描述子进行匹配计算它们之间的差距,然后将最接近一个匹配返回。
2 OpenCV特征匹配步骤
创建匹配器,BFMatcher(normType,crossCheck)
进行特征匹配,bf.match(des1,des2)
绘制匹配点,cv2.drawMatches(img1,kp1,img2,k2,...)
BFMatcher
normType:NORM_L1,NORM_L2,HAMMING1....
crossCheck:是否进行交叉匹配,默认为false
Match方法
参数为SIFT,SURF,OBR等计算的描述子
对两幅图的描述子进行计算
drawMatches
搜索img,kp
匹配图img,kp
match()方法返回的匹配结果
import cv2
import numpy as npimg=cv2.imread('./opencv_search.png')
img1=cv2.imread('./opencv_orig.png')gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray1=cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)sift=cv2.xfeatures2d.SIFT_create()kp1,des1=sift.detectAndCompute(gray,None)
kp2,des2=sift.detectAndCompute(gray1,None)bf=cv2.BFMatcher(cv2.NORM_L1)
match=bf.match(des1,des2)img3=cv2.drawMatches(img,kp1,img1,kp2,match,None)cv2.imshow('img3',img3)
cv2.waitKey(0)

十 FLANN特征匹配
1 FLANN优缺点
在进行批量特征匹配时,FLANN速度更快;
由于它使用的是邻近近似值,所以精度较差;
2 使用FLANN特征匹配的步骤
①创建FLANN匹配器,FlannBasedMatcher(...)
②进行特征匹配,flann.match/knnMatch(...)
③绘制匹配点,cv2.drawMathes/drawMatchesKnn(...)
FlannBasedMathcer
index_params字典:匹配算法KDTREE、LSH
search_params字典:指定KETREE算法中遍历树的次数
KDTREE
index_params=dict(algorithmFLANN_INDEX_KETREE,trees=5)
search_params
search_params=dict(checks=50)
knnMatch方法
参数为SIFT、SURF、ORB等计算的描述子;
k,表示取欧式距离最近的前k个关键点;
返回的是匹配的结果DMatch对象;
DMatch的内容
distance,描述子之间的距离,值越低越好;
queryIdx,第一个图像的描述子索引值;
trainIdx,第二个图的描述子索引值;
imgIdx,第二个图的索引值;drawMatchesKnn
搜索img,kp
匹配图img,kp
match()方法返回的匹配结果
十一 实战FLANN特征匹配
import cv2
import numpy as npimg1=cv2.imread('opencv_search.png')
img2=cv2.imread('opencv_orig.png')gray1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
gray2=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)#创建SIFT特征
sift=cv2.xfeatures2d.SIFT_create()#计算描述子与特征
kp1,des1=sift.detectAndCompute(img1,None)
kp2,des2=sift.detectAndCompute(img2,None)# 创建匹配器
index_params=dict(algorithm=1,trees=5)
search_params=dict(checks=50)
flann=cv2.FlannBasedMatcher(index_params,search_params)#对描述子进行匹配计算
matchs=flann.knnMatch(des1,des2,k=2)good=[]
for i,(m,n)in enumerate(matchs):if m.distance<0.7*n.distance:good.append(m)ret=cv2.drawMatchesKnn(img1,kp1,img2,kp2,[good],None)cv2.imshow('result',ret)
cv2.waitKey(0)

十二 图像查找
1 图像查找
特征匹配+单应性矩阵
什么是单应性矩阵

import cv2
import numpy as npimg1=cv2.imread('opencv_search.png')
img2=cv2.imread('opencv_orig.png')gray1=cv2.cvtColor(img1,cv2.COLOR_BGR2GRAY)
gray2=cv2.cvtColor(img2,cv2.COLOR_BGR2GRAY)#创建SIFT特征
sift=cv2.xfeatures2d.SIFT_create()#计算描述子与特征
kp1,des1=sift.detectAndCompute(img1,None)
kp2,des2=sift.detectAndCompute(img2,None)# 创建匹配器
index_params=dict(algorithm=1,trees=5)
search_params=dict(checks=50)
flann=cv2.FlannBasedMatcher(index_params,search_params)#对描述子进行匹配计算
matchs=flann.knnMatch(des1,des2,k=2)good=[]for i,(m,n) in enumerate(matchs):if m.distance<0.7*n.distance:good.append(m)if len(good)>=4:#print(len(good.trainIdx))srcPts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2)dstPts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2)H, _ = cv2.findHomography(srcPts, dstPts, cv2.RANSAC, 5.0)h, w = img1.shape[:2]pts = np.float32([[0, 0], [0, h - 1], [w - 1, h - 1], [w - 1, 0]]).reshape(-1, 1, 2)dst = cv2.perspectiveTransform(pts, H)cv2.polylines(img2, [np.int32(dst)], True, (0, 0, 255))
else:print('the number of god is less than 4')exit()ret=cv2.drawMatchesKnn(img1,kp1,img2,kp2,[good],None)cv2.imshow('resutl',ret)cv2.waitKey(0)
十三 图像拼接
1 图像合并的步骤
读文件并重置尺寸;
根据特征点和计算描述子,得到单应性矩阵;
图像变换;
图像拼接并输出图像;
import cv2
import numpy as np#第一步 读取文件,将图片设置成一样大小640x640
#第二步 找特征点,描述子,计算单应性矩阵
#第三步 根据单应性矩阵对图像进行变换,然后平移
#第四步 拼接并输出最终结果#读取两张图片
img1=cv2.imread('map1.png')
img2=cv2.imread('map2.png')#将两张同样图片设置成同样大小
img1=cv2.resize(img1,(640,480))
img2=cv2.resize(img2,(640,480))inputs=np.hstack((img1,img2))
cv2.imshow('input img',inputs)
cv2.waitKey(0)
import cv2
import numpy as npdef stitch_image(img1,img2,H):
#获得每张图片的四个角点
#对图片进行变换(单应性矩阵使图进行旋转,平移)
#创建一张大图,将两张图拼接到一起
#将结果输出#获得原始图的高/宽h1,w1=img1.shape[:2]h2,w2=img2.shape[:2]img1_dims=np.float32([[0,0],[0,h1],[w1,h1],[w1,0]]).reshape(-1,1,2)img2_dims=np.float32([[0,0],[0,h2],[w2,h2],[w2,0]]).reshape(-1,1,2)img1_transform=cv2.perspectiveTransform(img1_dims,H)result_dims=np.concatenate((img2_dims,img1_transform),axis=0)[x_min, y_min] = np.int32(result_dims.min(axis=0).ravel() - 0.5)[x_max, y_max] = np.int32(result_dims.max(axis=0).ravel() + 0.5)#平移的距离transform_dist=[-x_min,-y_min]transform_array=np.array([[1,0,transform_dist[0]],[0,1,transform_dist[1]],[0,0,1]])result_img=cv2.warpPerspective(img1,transform_array.dot(H),(x_max-x_min,y_max-y_min))result_img[transform_dist[1]:transform_dist[1]+h2,transform_dist[0]:transform_dist[0]+w2]=img2return result_img#第一步 读取文件,将图片设置成一样大小640x640
#第二步 找特征点,描述子,计算单应性矩阵
#第三步 根据单应性矩阵对图像进行变换,然后平移
#第四步 拼接并输出最终结果def get_homo(img1,img2):
#创建特征转换对象
#通过特征转换对象获得特征点和描述子
#创建特征匹配器
#进行特征匹配
#过滤特征,找出有效的特征匹配点sift=cv2.xfeatures2d.SIFT_create()k1,d1=sift.detectAndCompute(img1,None)k2,d2=sift.detectAndCompute(img2,None)#创建特征匹配bf=cv2.BFMatcher()matches=bf.knnMatch(d1,d2,k=2)
#过滤特征,找出有效的特征匹配点verify_ratio=0.8verify_matches=[]for m1,m2 in matches:if m1.distance<0.8*m2.distance:verify_matches.append(m1)min_matches=8if len(verify_matches)>min_matches:img1_pts=[]img2_pts=[]for m in verify_matches:img1_pts.append(k1[m.queryIdx].pt)img2_pts.append(k2[m.trainIdx].pt)img1_pts=np.float32(img1_pts).reshape(-1,1,2)img2_pts=np.float32(img2_pts).reshape(-1,1,2)H,mask=cv2.findHomography(img1_pts,img2_pts,cv2.RANSAC,5.0)return Helse:print("err:Not enough matches!")exit()
#第一步 读取文件,将图片设置成一样大小640x480
#第二步 找特征点,描述子,计算单应性矩阵
#第三步 根据单应性矩阵对图像进行变换,然后平移
#第四步 拼接并输出最终结果#读取两张图片
img1=cv2.imread('map1.png')
img2=cv2.imread('map2.png')#将两张同样图片设置成同样大小
img1=cv2.resize(img1,(640,480))
img2=cv2.resize(img2,(640,480))inputs=np.hstack((img1,img2))#获得单应性矩阵
H=get_homo(img1,img2)#进行图像拼接
result_image=stitch_image(img1,img2,H)cv2.imshow('input img',inputs)
cv2.waitKey(0)
相关文章:
OpenCV 特征点检测与匹配
一 OpenCV特征场景 ①图像搜索,如以图搜图; ②拼图游戏; ③图像拼接,将两长有关联得图拼接到一起; 1 拼图方法 寻找特征 特征是唯一的 可追踪的 能比较的 二 角点 在特征中最重要的是角点 灰度剃度的最大值对应的…...
css布局之flex应用
/*父 100*/.parent-div {/* 这里添加你想要的属性 */display: flex;flex-direction: row; //行justify-content: space-between; //左右对齐align-items: center;flex-wrap: wrap; //换行}/*中 90 10 */.middle-div {/* 这里添加你想要的属性 */display: flex;flex-direction:…...
树莓派4B设置AP热点步骤
树莓派4B设置AP热点步骤:先进入root模式 预先进行apt-get update 第1步:安装network-manager sudo apt-get install network-manager第2步:安装git apt-get install git apt-get install util-linux procps hostapd iproute2 iw haveged …...
Java程序之百鸡百钱问题
题目: 百钱买百鸡的问题算是一套非常经典的不定方程的问题,题目很简单:公鸡5文钱一只,母鸡3文钱一只,小鸡3只一文钱,用100文钱买一百只鸡,其中公鸡,母鸡,小鸡都必须要有,…...
Mybatis——动态sql
if标签 用于判断条件是否成立。使用test属性进行条件判断,如果条件为true,则拼接sql。 <where>标签用于识别语句是否需要连接词and,识别sql语句。 package com.t0.maybatisc.mapper;import com.t0.maybatisc.pojo.Emp; import org.a…...
可视化大屏开发系列——页面布局
页面布局是可视化大屏的基础,想要拥有一个基本美观的大屏,就得考虑页面整体模块的宽高自适应,我们自然就会想到具有强大灵活性flex布局,再借助百分比布局来辅助。至此,大屏页面布局问题即可得到解决。 可视化大屏开发系…...
Python statistics 模块
Python 的 statistics 模块提供了一组用于执行各种统计计算的函数,包括平均值、中位数、标准差、方差以及其他统计量。让我来简单介绍一下。 首先,你可以使用以下方式导入 statistics 模块: python import statistics 接下来,…...
wireshark常见使用表达式
目录 1. 捕获过滤器 (Capture Filters)基本捕获过滤器组合捕获过滤器 2. 显示过滤器 (Display Filters)基本显示过滤器复杂显示过滤器协议特定显示过滤器 3. 进阶显示过滤器技巧使用函数和操作符逻辑操作符 4. 常见网络协议过滤表达式示例HTTP 协议HTTPS 协议DNS 协议DHCP 协议…...
用Java获取键盘输入数的个十百位数
这段Java代码是一个简单的程序,用于接收用户输入的一个三位数,并将其分解为个位、十位和百位数字,然后分别打印出来。下面是代码的详细解释: 导入所需类库: import java.util.Scanner;:导入Scanner类,用于从…...
第10章 启动过程组 (制定项目章程)
第10章 启动过程组 9.1制定项目章程,在第三版教材第356~360页; 文字图片音频方式 视频12 第一个知识点:主要输出 1、项目章程(重要知识点) 项目目的 为了稳定与发展公司的客户群(抽象,非具体) 可测量的项目…...
html侧导航栏客服栏
ico 替换 ICO <html xmlns"http://www.w3.org/1999/xhtml"><head><meta http-equiv"Content-Type" content"text/html; charsetutf-8"><title>返回顶部</title><script src"js/jquery-2.0.3.min.js"…...
Clonable接口和拷贝
Hello~小伙伴们!本篇学习Clonable接口与深拷贝,一起往下看吧~(画图水平有限,两张图,,我真的画了巨久,求路过的朋友来个3连~阿阿阿~~~) 目录 1、Clonable接口概念 2、拷贝 2、1浅拷贝 2、2深拷贝 1、Clon…...
关于小蛋の编程和小蛋编程为同一作者的说明
小蛋の编程和小蛋编程的作品为同一人制作,因前者为父母的手机号进行注册,现用本人手机号注册了新账号小蛋编程,后续文章将在新账号小蛋编程上进行刊登,同时在小蛋编程上对原账号文章进行转载。此账号不再发布帖子,请大…...
大数据平台之Spark
Apache Spark 是一个开源的分布式计算系统,主要用于大规模数据处理和分析。它由UC Berkeley AMPLab开发,并由Apache Software Foundation维护。Spark旨在提供比Hadoop MapReduce更快的处理速度和更丰富的功能,特别是在处理迭代算法和交互式数…...
How to use ModelSim
How to use ModelSim These are all written by a robot Remember, you can only simulate tb files....
【专业英语 复习】第8章 Communications and Networks
1. 单选题 One of the most dramatic changes in connectivity and communications in the past few years has been ____. A. widespread use of mobile devices with wireless Internet connectivity B. chat rooms C. satellite uplinks D. running programs on rem…...
运行vue3项目相关报错
1. VSCode打开TSVue3项目很多地方报错 报错内容 几乎所有文件都会出现未知飘红 error Delete CR prettier/prettier报错原因 插件冲突,Windows系统回车换行符与MAC不一致(所以这个问题Windows系统才会出现) 解决 需要安装Vue - Official…...
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。 Diffusion Models 1、Autoregressive Model Beats Diffusion: Llama for Scalable Image Generation LlamaGen,是一个…...
Centos Stream9 和Centos Stream10的下载网址
Index of /https://mirror.stream.centos.org/...
chrome 录制器及性能分析工具的使用
需求背景: 对比不同VPN方案网络延迟的差异。 验证工具: chrome浏览器自带的录制器、性能插件可以完美的解决这个问题。 注意:录制的操作都在当前页面,不存在新开标签页的场景 解决方案: 使用chrome录制器…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
关于nvm与node.js
1 安装nvm 安装过程中手动修改 nvm的安装路径, 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解,但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后,通常在该文件中会出现以下配置&…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
九天毕昇深度学习平台 | 如何安装库?
pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子: 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
