【自我提升】提升能量书籍
-
《原子习惯》 (Atomic Habits) - 詹姆斯·克利尔 (James Clear):
- 核心思想:微小的习惯改变可以带来显著的生活变化。
- 方法:
- 将大目标拆分为可管理的小习惯。
- 使用“习惯堆叠”技术,将新习惯与已有习惯结合。
- 创建支持性环境,移除不良习惯的诱因。
-
《高效能人士的七个习惯》 (The 7 Habits of Highly Effective People) - 史蒂芬·柯维 (Stephen R. Covey):
- 核心思想:通过改变个人行为和思维模式来提高效率和能量。
- 方法:
- 主动积极:控制自己的反应。
- 以终为始:设定清晰的目标和愿景。
- 要事第一:优先处理重要但不紧急的任务。
- 双赢思维:在解决问题时寻求互利共赢。
- 知彼解己:有效沟通,理解他人。
- 统合综效:团队合作,发挥协同效应。
- 不断更新:定期自我提升和反思。
-
《晨间奇迹》 (The Miracle Morning) - 哈尔·埃尔罗德 (Hal Elrod):
- 核心思想:通过晨间的六个步骤来提升整体生活质量。
- 方法:
- 沉默:冥想或祷告,开始一天的平静时刻。
- 肯定:大声宣读积极的肯定句子。
- 视觉化:想象实现目标的过程和结果。
- 运动:进行晨间锻炼,提升能量。
- 阅读:阅读有益的书籍,获取知识和灵感。
- 写作:写日记或计划,理清思绪和目标。
-
《每天最重要的3件事》 (The One Thing) - 加里·凯勒 (Gary Keller) 和 杰伊·帕帕桑 (Jay Papasan):
- 核心思想:聚焦于最重要的任务以最大化效率和成果。
- 方法:
- 确定每天最重要的一个任务,优先完成。
- 每天问自己:“今天能做的最重要的事情是什么?”
- 避免多任务处理,集中精力完成最重要的任务。
-
《深度工作》 (Deep Work) - 卡尔·纽波特 (Cal Newport):
- 核心思想:通过专注的深度工作提升生产力和能量。
- 方法:
- 设立专注的工作时间,避免干扰。
- 每天安排不间断的工作时段。
- 养成深度工作的习惯,定期练习专注。
-
《精力管理》 (The Power of Full Engagement) - 吉姆·洛尔 (Jim Loehr) 和 托尼·施瓦茨 (Tony Schwartz):
- 核心思想:通过管理能量而不仅仅是时间来提升效率和幸福感。
- 方法:
- 平衡身体、情感、心智和精神四个能量源。
- 进行定期的休息和恢复,避免精力耗尽。
- 设定有意义的目标,找到内在驱动力。
-
《不抱怨的世界》 (The Energy Bus) - 乔恩·高登 (Jon Gordon):
- 核心思想:通过积极思考和正能量来改变生活。
- 方法:
- 培养乐观的心态,避免消极思维。
- 建立支持性人际关系,远离负面影响。
- 经常表达感激,保持感恩的心态。
相关文章:
【自我提升】提升能量书籍
《原子习惯》 (Atomic Habits) - 詹姆斯克利尔 (James Clear): 核心思想:微小的习惯改变可以带来显著的生活变化。方法: 将大目标拆分为可管理的小习惯。使用“习惯堆叠”技术,将新习惯与已有习惯结合。创建支持性环境,…...
python图像处理库-PIL(Pillow)
PIL库全称为Python Imaging Library,即Python图像处理库,是一个在Python中用于处理图像的非常流行的库。 一、PIL介绍 这个库提供了广泛的文件格式支持、高效的内部表示以及相当强大的图像处理功能。 核心图像库旨在快速访问存储在几种基本像素格式中的数…...
【2024】kafka streams的详细使用与案例练习(2)
目录 前言使用1、整体结构1.1、序列化 2、 Kafka Streams 常用的 API2.1、 StreamsBuilder2.2、 KStream 和 KTable2.3、 filter和 filterNot2.4、 map 和 mapValues2.5、 flatMap 和 flatMapValues2.6、 groupByKey 和 groupBy2.7、 count、reduce 和 aggregate2.8、 join 和 …...
qt 简单实验 读取json格式的配置文件
1.概要 2.代码 //#include "mainwindow.h"#include <QApplication> #include <QFile> #include <QJsonDocument> #include <QJsonObject> #include <QDebug> //读取json数据的配置文件QJsonObject readJsonConfigFile(const QString …...
Docker常用命令与实战示例
docker 1. 安装2. 常用命令3. 存储4. 网络5. redis主从复制示例6. wordpress示例7. DockerFile8. 一键安装超多中间件(compose) 1. 安装 以centOS系统为例 # 移除旧版本docker sudo yum remove docker \docker-client \docker-client-latest \docker-c…...
数据结构(基础知识)
基础概念: 数据:数据是信息的载体,是描述客观事物属性的数,字符及所有能输入到计算机中并被计算机程序识别和处理的符号的集合 数据元素:是数据的基本单位,在程序中常作为一个整体来考虑 数据对象&#…...
计算机网络:网络层 - 路由选择协议
计算机网络:网络层 - 路由选择协议 路由器的结构路由选择协议概述自治系统 AS内部网关协议路由信息协议 RIP距离向量算法RIP报文格式收敛问题 开放最短路径优先 OSPF基本工作原理自治系统分区 外部网关协议BGP-4 路由器的结构 如图所示,路由器被分为路由…...
JupyterLab使用指南(六):JupyterLab的 Widget 控件
1. 什么是 Widget 控件 JupyterLab 中的 Widget 控件是一种交互式的小部件,可以用于创建动态的、响应用户输入的界面。通过使用 ipywidgets 库,用户可以在 Jupyter notebook 中创建滑块、按钮、文本框、选择器等控件,从而实现数据的交互式展…...
OpenCV 特征点检测与匹配
一 OpenCV特征场景 ①图像搜索,如以图搜图; ②拼图游戏; ③图像拼接,将两长有关联得图拼接到一起; 1 拼图方法 寻找特征 特征是唯一的 可追踪的 能比较的 二 角点 在特征中最重要的是角点 灰度剃度的最大值对应的…...
css布局之flex应用
/*父 100*/.parent-div {/* 这里添加你想要的属性 */display: flex;flex-direction: row; //行justify-content: space-between; //左右对齐align-items: center;flex-wrap: wrap; //换行}/*中 90 10 */.middle-div {/* 这里添加你想要的属性 */display: flex;flex-direction:…...
树莓派4B设置AP热点步骤
树莓派4B设置AP热点步骤:先进入root模式 预先进行apt-get update 第1步:安装network-manager sudo apt-get install network-manager第2步:安装git apt-get install git apt-get install util-linux procps hostapd iproute2 iw haveged …...
Java程序之百鸡百钱问题
题目: 百钱买百鸡的问题算是一套非常经典的不定方程的问题,题目很简单:公鸡5文钱一只,母鸡3文钱一只,小鸡3只一文钱,用100文钱买一百只鸡,其中公鸡,母鸡,小鸡都必须要有,…...
Mybatis——动态sql
if标签 用于判断条件是否成立。使用test属性进行条件判断,如果条件为true,则拼接sql。 <where>标签用于识别语句是否需要连接词and,识别sql语句。 package com.t0.maybatisc.mapper;import com.t0.maybatisc.pojo.Emp; import org.a…...
可视化大屏开发系列——页面布局
页面布局是可视化大屏的基础,想要拥有一个基本美观的大屏,就得考虑页面整体模块的宽高自适应,我们自然就会想到具有强大灵活性flex布局,再借助百分比布局来辅助。至此,大屏页面布局问题即可得到解决。 可视化大屏开发系…...
Python statistics 模块
Python 的 statistics 模块提供了一组用于执行各种统计计算的函数,包括平均值、中位数、标准差、方差以及其他统计量。让我来简单介绍一下。 首先,你可以使用以下方式导入 statistics 模块: python import statistics 接下来,…...
wireshark常见使用表达式
目录 1. 捕获过滤器 (Capture Filters)基本捕获过滤器组合捕获过滤器 2. 显示过滤器 (Display Filters)基本显示过滤器复杂显示过滤器协议特定显示过滤器 3. 进阶显示过滤器技巧使用函数和操作符逻辑操作符 4. 常见网络协议过滤表达式示例HTTP 协议HTTPS 协议DNS 协议DHCP 协议…...
用Java获取键盘输入数的个十百位数
这段Java代码是一个简单的程序,用于接收用户输入的一个三位数,并将其分解为个位、十位和百位数字,然后分别打印出来。下面是代码的详细解释: 导入所需类库: import java.util.Scanner;:导入Scanner类,用于从…...
第10章 启动过程组 (制定项目章程)
第10章 启动过程组 9.1制定项目章程,在第三版教材第356~360页; 文字图片音频方式 视频12 第一个知识点:主要输出 1、项目章程(重要知识点) 项目目的 为了稳定与发展公司的客户群(抽象,非具体) 可测量的项目…...
html侧导航栏客服栏
ico 替换 ICO <html xmlns"http://www.w3.org/1999/xhtml"><head><meta http-equiv"Content-Type" content"text/html; charsetutf-8"><title>返回顶部</title><script src"js/jquery-2.0.3.min.js"…...
Clonable接口和拷贝
Hello~小伙伴们!本篇学习Clonable接口与深拷贝,一起往下看吧~(画图水平有限,两张图,,我真的画了巨久,求路过的朋友来个3连~阿阿阿~~~) 目录 1、Clonable接口概念 2、拷贝 2、1浅拷贝 2、2深拷贝 1、Clon…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
UDP(Echoserver)
网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法:netstat [选项] 功能:查看网络状态 常用选项: n 拒绝显示别名&#…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
OpenLayers 分屏对比(地图联动)
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
