Apriori 处理ALLElectronics事务数据
通过Apriori算法挖掘以下事务集合的频繁项集:

流程图

代码
# 导入必要的库
from itertools import combinations# 定义Apriori算法函数
def apriori(transactions, min_support, min_confidence):# 遍历数据,统计每个项的支持度 item_support = {}for transaction in transactions:for item in transaction:if item not in item_support:item_support[item] = 0item_support[item] += 1# 计算总事务数total_transactions = len(transactions)# 计算频繁项集frequent_itemsets = {}for item, support in item_support.items():if support / total_transactions >= min_support: # 即该项集在事务数据库中出现的次数除以总数frequent_itemsets[(item,)] = support / total_transactions# 生成候选项集并迭代生成频繁项集k = 2while True:candidates = set() # 存储所有可能的项集for itemset in frequent_itemsets.keys():for item in itemset:candidates.add(item)# 生成候选项集candidates = list(combinations(candidates, k)) # 生成所有可能的k项集# 统计候选项集的支持度candidate_support = {}for transaction in transactions:for candidate in candidates:if set(candidate).issubset(set(transaction)):if candidate not in candidate_support:candidate_support[candidate] = 0candidate_support[candidate] += 1# 更新频繁项集frequent_itemsets_k = {}for candidate, support in candidate_support.items():if support / total_transactions >= min_support:frequent_itemsets_k[candidate] = support / total_transactions# 如果没有频繁项集则停止迭代if not frequent_itemsets_k:breakfrequent_itemsets.update(frequent_itemsets_k)k += 1# 生成关联规则rules = []for itemset in frequent_itemsets.keys():if len(itemset) >= 2:for i in range(1, len(itemset)):for combination in combinations(itemset, i):X = combinationY = tuple(set(itemset) - set(combination))confidence = frequent_itemsets[itemset] / frequent_itemsets[X]if confidence >= min_confidence:rules.append((X, Y, frequent_itemsets[itemset], confidence))# frequent_itemsets (dict): 频繁项集和对应的支持度,键为项集的元组,值为支持度# rules (list): 关联规则,每一条规则表示为一个元组 (X, Y),其中X为前项集合,Y为后项集合return frequent_itemsets, rules# 示例数据集
transactions = [ ['I1', 'I2', 'I5'],['I2', 'I4'],['I2', 'I3'],['I1', 'I2', 'I4'],['I1', 'I3'],['I2', 'I3'],['I1', 'I3'],['I1', 'I2', 'I3', 'I5'],['I1', 'I2', 'I3']
]
# 设置最小支持度和最小置信度阈值
min_support = 0.3
min_confidence = 0.6
# 调用Apriori算法函数
frequent_itemsets, rules = apriori(transactions, min_support, min_confidence)
print("频繁项集和对应的支持度:")
for itemset, support in frequent_itemsets.items():print("{}: Support = {:.2f}".format(itemset, support))
# 输出关联规则和置信度
print("\n关联规则和置信度:")
for X, Y, support, confidence in rules:print("{} => {}: Support = {:.2f}, Confidence = {:.2f}".format(X, Y, support, confidence))
-
输出结果截图

相关文章:
Apriori 处理ALLElectronics事务数据
通过Apriori算法挖掘以下事务集合的频繁项集: 流程图 代码 # 导入必要的库 from itertools import combinations# 定义Apriori算法函数 def apriori(transactions, min_support, min_confidence):# 遍历数据,统计每个项的支持度 item_support {}for tr…...
Content Provider:深入解析Android数据共享的核心组件
在Android开发中,Content Provider是一个重要的组件,它允许应用程序之间共享数据。它扮演着“数据访问中间层”的角色,为不同应用程序提供了一个统一的数据访问接口。以下将从技术难点、面试官关注点、回答吸引力以及代码举例四个方面&#x…...
069、Python 函数的递归调用
函数可以自己调用自己吗??? 这就涉及函数的递归的用法了。 递归的概念: 函数递归是指函数在其定义中直接或间接调用自身的过程。 递归是一种强有力的编程技术,通常用于解决可以被分解为相同问题的子问题的情况&…...
数仓开发那些事_番外
一位神州的正式员工(没错,就是之前文章中出现的实习生):一闪,你今年涨工资了吗? 一闪:mad,一年辛苦到头只涨了500米 神州员工:你去年绩效不是优秀吗,怎么就涨…...
Vue3+TypeScript项目实战——打造雨雪交加的智慧城市
个人简介 👀个人主页: 前端杂货铺 ⚡开源项目: rich-vue3 (基于 Vue3 TS Pinia Element Plus Spring全家桶 MySQL) 🙋♂️学习方向: 主攻前端方向,正逐渐往全干发展 …...
经典游戏案例:植物大战僵尸
学习目标:植物大战僵尸核心玩法实现 游戏画面 项目结构目录 部分核心代码 using System; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.SceneManagement; using Random UnityEngine.Random;public enum Z…...
Go 与 Java 字符编码选择:UTF-8 与 UTF-16 的较量
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...
vscode+picgo+gitee实现Markdown图床
vscode中编辑Markdown文件,复制的图片默认是保存在本地的。当文档上传csdn时,会提示图片无法识别 可以在gitee上创建图床仓库,使用picgo工具上传图片,在Markdown中插入gitee链接的方式来解决该问题。 一、 安装picgo工具 1.1 v…...
【thinkphp问题栏】tp5.0分页技巧
一、调用内置方法paginate thinkphp内置了一个paginate方法支持分页功能 该方法位于library\think\db\Query.php内 /*** 分页查询* param int|array $listRows 每页数量 数组表示配置参数* param int|bool $simple 是否简洁模式或者总记录数* param array $config 配…...
获取时间戳是使用System.currentTimeMillis()还是使用new Date().getTime()(阿里开发规范)?
1.阿里规范 在阿里的Java开发手册中强制要求使用System.currentTimeMillis() 2.为什么(源码详解) new Date().getTime()它实际上也是调用的System.currentTimeMillis(),源码分析。 这个fastTime是它的成员变量,在new Date()的时候就被赋值了。 扩展一…...
仿饿了么加入购物车旋转控件 - 自带闪转腾挪动画 的按钮
, mWidth - mCircleWidth, mHeight - mCircleWidth); canvas.drawRoundRect(rectF, mHintBgRoundValue, mHintBgRoundValue, mHintPaint); //前景文字 mHintPaint.setColor(mHintFgColor); // 计算Baseline绘制的起点X轴坐标 int baseX (int) (mWidth / 2 - mHintPaint.m…...
Docker部署nacos集群
docker拉取nacos镜像,本文使用nacos2.0.3 三台服务器都要执行以下命令 docker pull nacos/nacos-server:v2.2.0准备挂载的日志目录和配置文件目录 日志:mkdir /usr/local/software/nacos/logs 配置文件:/usr/local/software/nacos/conf在配…...
centos查找文件 及 操作写入的进程
du -sh * 查看目录空间占用、发现大文件,确定进程,结束 yum install lsof 安装lsof 查看文件写入的 进程 2. lsof /root/.influxdbv2/engine/data/bab49411e5f7cbce/autogen/1/000000036-000000002.tsm COMMAND PID USER FD TYPE …...
构建高可用Java微服务架构的秘籍
构建高可用Java微服务架构的秘籍 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 随着云计算和分布式系统的快速发展,微服务架构已成为构建大型应用…...
VBA学习(18):VBA制作任意工作表均可使用的聚光灯
在需要制作聚光的工作簿,按<ALTF11>组合键,打开VBE编辑器。在右侧[工程资源管理器窗格]选中ThisWorkbook模块,将以下代码复制粘贴到该模块的代码窗口。 Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, ByVal Target …...
【STM32-启动文件 startup_stm32f103xe.s】
STM32-启动文件 startup_stm32f103xe.s ■ STM32-启动文件■ STM32-启动文件主要做了以下工作:■ STM32-启动文件指令■ STM32-启动文件代码详解■ 栈空间的开辟■ 栈空间大小 Stack_Size■ .map 文件的详细介绍■ 打开map文件 ■ 堆空间■ PRESERVE8 和 THUMB 指令…...
51学习记录(一)——51介绍及震动感应灯
文章目录 前言一、STC89C522.内部结构及引脚 二、继电器原理及震动传感器原理三、项目搭建及实现 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出 提示:以下是本篇文章正文内容,下面案例可供参考 一、STC89C52 1.简介 所属系列:51单…...
2024GLEE生活暨教育(上海)博览会,8月20-22日,国家会展中心(上海)
2024GLEE生活暨教育(上海)博览会将于8月20-22日在中国国家会展中心(上海)举行,博览会总面积近万平方米,设有美好生活和教育产品两大主力展区,全面覆盖婴幼儿、学龄前、小学、初中、高中、大学、中年、老年各个年龄段的…...
debug调试高级功能 断点、布局 及Android Studio常用快捷按键使用详情
文章目录 debug断点篇:打临时断点(只用一次):alt断点条件断点:在断点上,点击右键,在Condition那里,设置我们需要的值,循环就会自动停到我们设置的那个值那里依赖断点&…...
51单片机STC89C52RC——6.1 中断系统
一,文字层面理解 反正我看下面的几段文字时脑壳没有正常运转。一个头几个大 中断系统是为使CPU具有对外界紧急事件的实时处理能力而设置的。 当中央处理机CPU正在处理某件事的时候外界发生了紧急事件请求,要求CPU暂停当前的工作,转而去处理这…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
