当前位置: 首页 > news >正文

Apriori 处理ALLElectronics事务数据

通过Apriori算法挖掘以下事务集合的频繁项集:

流程图

代码
# 导入必要的库
from itertools import combinations# 定义Apriori算法函数
def apriori(transactions, min_support, min_confidence):# 遍历数据,统计每个项的支持度 item_support = {}for transaction in transactions:for item in transaction:if item not in item_support:item_support[item] = 0item_support[item] += 1# 计算总事务数total_transactions = len(transactions)# 计算频繁项集frequent_itemsets = {}for item, support in item_support.items():if support / total_transactions >= min_support: # 即该项集在事务数据库中出现的次数除以总数frequent_itemsets[(item,)] = support / total_transactions# 生成候选项集并迭代生成频繁项集k = 2while True:candidates = set() # 存储所有可能的项集for itemset in frequent_itemsets.keys():for item in itemset:candidates.add(item)# 生成候选项集candidates = list(combinations(candidates, k)) # 生成所有可能的k项集# 统计候选项集的支持度candidate_support = {}for transaction in transactions:for candidate in candidates:if set(candidate).issubset(set(transaction)):if candidate not in candidate_support:candidate_support[candidate] = 0candidate_support[candidate] += 1# 更新频繁项集frequent_itemsets_k = {}for candidate, support in candidate_support.items():if support / total_transactions >= min_support:frequent_itemsets_k[candidate] = support / total_transactions# 如果没有频繁项集则停止迭代if not frequent_itemsets_k:breakfrequent_itemsets.update(frequent_itemsets_k)k += 1# 生成关联规则rules = []for itemset in frequent_itemsets.keys():if len(itemset) >= 2:for i in range(1, len(itemset)):for combination in combinations(itemset, i):X = combinationY = tuple(set(itemset) - set(combination))confidence = frequent_itemsets[itemset] / frequent_itemsets[X]if confidence >= min_confidence:rules.append((X, Y, frequent_itemsets[itemset], confidence))# frequent_itemsets (dict): 频繁项集和对应的支持度,键为项集的元组,值为支持度# rules (list): 关联规则,每一条规则表示为一个元组 (X, Y),其中X为前项集合,Y为后项集合return frequent_itemsets, rules# 示例数据集
transactions = [    ['I1', 'I2', 'I5'],['I2', 'I4'],['I2', 'I3'],['I1', 'I2', 'I4'],['I1', 'I3'],['I2', 'I3'],['I1', 'I3'],['I1', 'I2', 'I3', 'I5'],['I1', 'I2', 'I3']
]
# 设置最小支持度和最小置信度阈值
min_support = 0.3
min_confidence = 0.6
# 调用Apriori算法函数
frequent_itemsets, rules = apriori(transactions, min_support, min_confidence)
print("频繁项集和对应的支持度:")
for itemset, support in frequent_itemsets.items():print("{}: Support = {:.2f}".format(itemset, support))
# 输出关联规则和置信度
print("\n关联规则和置信度:")
for X, Y, support, confidence in rules:print("{} => {}: Support = {:.2f}, Confidence = {:.2f}".format(X, Y, support, confidence))
  • 输出结果截图

相关文章:

Apriori 处理ALLElectronics事务数据

通过Apriori算法挖掘以下事务集合的频繁项集: 流程图 代码 # 导入必要的库 from itertools import combinations# 定义Apriori算法函数 def apriori(transactions, min_support, min_confidence):# 遍历数据,统计每个项的支持度 item_support {}for tr…...

Content Provider:深入解析Android数据共享的核心组件

在Android开发中,Content Provider是一个重要的组件,它允许应用程序之间共享数据。它扮演着“数据访问中间层”的角色,为不同应用程序提供了一个统一的数据访问接口。以下将从技术难点、面试官关注点、回答吸引力以及代码举例四个方面&#x…...

069、Python 函数的递归调用

函数可以自己调用自己吗??? 这就涉及函数的递归的用法了。 递归的概念: 函数递归是指函数在其定义中直接或间接调用自身的过程。 递归是一种强有力的编程技术,通常用于解决可以被分解为相同问题的子问题的情况&…...

数仓开发那些事_番外

一位神州的正式员工(没错,就是之前文章中出现的实习生):一闪,你今年涨工资了吗? 一闪:mad,一年辛苦到头只涨了500米 神州员工:你去年绩效不是优秀吗,怎么就涨…...

Vue3+TypeScript项目实战——打造雨雪交加的智慧城市

个人简介 👀个人主页: 前端杂货铺 ⚡开源项目: rich-vue3 (基于 Vue3 TS Pinia Element Plus Spring全家桶 MySQL) 🙋‍♂️学习方向: 主攻前端方向,正逐渐往全干发展 &#x1…...

经典游戏案例:植物大战僵尸

学习目标:植物大战僵尸核心玩法实现 游戏画面 项目结构目录 部分核心代码 using System; using System.Collections; using System.Collections.Generic; using UnityEngine; using UnityEngine.SceneManagement; using Random UnityEngine.Random;public enum Z…...

Go 与 Java 字符编码选择:UTF-8 与 UTF-16 的较量

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…...

vscode+picgo+gitee实现Markdown图床

vscode中编辑Markdown文件,复制的图片默认是保存在本地的。当文档上传csdn时,会提示图片无法识别 可以在gitee上创建图床仓库,使用picgo工具上传图片,在Markdown中插入gitee链接的方式来解决该问题。 一、 安装picgo工具 1.1 v…...

【thinkphp问题栏】tp5.0分页技巧

一、调用内置方法paginate thinkphp内置了一个paginate方法支持分页功能 该方法位于library\think\db\Query.php内 /*** 分页查询* param int|array $listRows 每页数量 数组表示配置参数* param int|bool $simple 是否简洁模式或者总记录数* param array $config 配…...

获取时间戳是使用System.currentTimeMillis()还是使用new Date().getTime()(阿里开发规范)?

1.阿里规范 在阿里的Java开发手册中强制要求使用System.currentTimeMillis() 2.为什么(源码详解) new Date().getTime()它实际上也是调用的System.currentTimeMillis(),源码分析。 这个fastTime是它的成员变量,在new Date()的时候就被赋值了。 扩展一…...

仿饿了么加入购物车旋转控件 - 自带闪转腾挪动画 的按钮

, mWidth - mCircleWidth, mHeight - mCircleWidth); canvas.drawRoundRect(rectF, mHintBgRoundValue, mHintBgRoundValue, mHintPaint); //前景文字 mHintPaint.setColor(mHintFgColor); // 计算Baseline绘制的起点X轴坐标 int baseX (int) (mWidth / 2 - mHintPaint.m…...

Docker部署nacos集群

docker拉取nacos镜像,本文使用nacos2.0.3 三台服务器都要执行以下命令 docker pull nacos/nacos-server:v2.2.0准备挂载的日志目录和配置文件目录 日志:mkdir /usr/local/software/nacos/logs 配置文件:/usr/local/software/nacos/conf在配…...

centos查找文件 及 操作写入的进程

du -sh * 查看目录空间占用、发现大文件,确定进程,结束 yum install lsof 安装lsof 查看文件写入的 进程 2. lsof /root/.influxdbv2/engine/data/bab49411e5f7cbce/autogen/1/000000036-000000002.tsm COMMAND PID USER FD TYPE …...

构建高可用Java微服务架构的秘籍

构建高可用Java微服务架构的秘籍 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 随着云计算和分布式系统的快速发展,微服务架构已成为构建大型应用…...

VBA学习(18):VBA制作任意工作表均可使用的聚光灯

在需要制作聚光的工作簿&#xff0c;按<ALTF11>组合键&#xff0c;打开VBE编辑器。在右侧[工程资源管理器窗格]选中ThisWorkbook模块&#xff0c;将以下代码复制粘贴到该模块的代码窗口。 Private Sub Workbook_SheetSelectionChange(ByVal Sh As Object, ByVal Target …...

【STM32-启动文件 startup_stm32f103xe.s】

STM32-启动文件 startup_stm32f103xe.s ■ STM32-启动文件■ STM32-启动文件主要做了以下工作&#xff1a;■ STM32-启动文件指令■ STM32-启动文件代码详解■ 栈空间的开辟■ 栈空间大小 Stack_Size■ .map 文件的详细介绍■ 打开map文件 ■ 堆空间■ PRESERVE8 和 THUMB 指令…...

51学习记录(一)——51介绍及震动感应灯

文章目录 前言一、STC89C522.内部结构及引脚 二、继电器原理及震动传感器原理三、项目搭建及实现 前言 一个学习嵌入式的小白~ 有问题评论区或私信指出 提示&#xff1a;以下是本篇文章正文内容&#xff0c;下面案例可供参考 一、STC89C52 1.简介 所属系列&#xff1a;51单…...

2024GLEE生活暨教育(上海)博览会,8月20-22日,国家会展中心(上海)

2024GLEE生活暨教育(上海)博览会将于8月20-22日在中国国家会展中心&#xff08;上海&#xff09;举行&#xff0c;博览会总面积近万平方米&#xff0c;设有美好生活和教育产品两大主力展区&#xff0c;全面覆盖婴幼儿、学龄前、小学、初中、高中、大学、中年、老年各个年龄段的…...

debug调试高级功能 断点、布局 及Android Studio常用快捷按键使用详情

文章目录 debug断点篇&#xff1a;打临时断点&#xff08;只用一次&#xff09;&#xff1a;alt断点条件断点&#xff1a;在断点上&#xff0c;点击右键&#xff0c;在Condition那里&#xff0c;设置我们需要的值&#xff0c;循环就会自动停到我们设置的那个值那里依赖断点&…...

51单片机STC89C52RC——6.1 中断系统

一&#xff0c;文字层面理解 反正我看下面的几段文字时脑壳没有正常运转。一个头几个大 中断系统是为使CPU具有对外界紧急事件的实时处理能力而设置的。 当中央处理机CPU正在处理某件事的时候外界发生了紧急事件请求&#xff0c;要求CPU暂停当前的工作&#xff0c;转而去处理这…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

tree 树组件大数据卡顿问题优化

问题背景 项目中有用到树组件用来做文件目录&#xff0c;但是由于这个树组件的节点越来越多&#xff0c;导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多&#xff0c;导致的浏览器卡顿&#xff0c;这里很明显就需要用到虚拟列表的技术&…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档&#xff09;&#xff0c;如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下&#xff0c;风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...