当前位置: 首页 > news >正文

Pytorch(5)-----梯度计算

一、问题

    如何使用Pytorch计算样本张量的基本梯度呢?考虑一个样本数据集,且有两个展示变量,在给定初始权重的基础上,如何在每次迭代中计算梯度呢?

二、如何运行

    假设有x_data 和 y_data 列表,计算两个列表需要计算损失函数,一个forward通道以及一个循环中的训练。

    forward函数计算权重矩阵和输入张量的乘积。

from torch import FloatTensor
from torch.autograd import Variable  # 引入Variable方法是为了计算变量的梯度
a = Variable(FloatTensor([5]))
weights = [Variable(FloatTensor([i]), requires_grad=True) for i in (12, 53, 91, 73)]w1, w2, w3, w4 = weights  #权重赋值
b = w1 * a
c = w2 * a
d = w3 * b + w4 * c
Loss = (10 - d)
Loss.backward() #从loss 开始反向传播for index, weight in enumerate(weights, start=1):gradient, *_ = weight.grad.data  #取出梯度print(f"Gradient of w{index} w.r.t to Loss: {gradient}")Gradient of w1 w.r.t to Loss: -455.0
Gradient of w2 w.r.t to Loss: -365.0
Gradient of w3 w.r.t to Loss: -60.0
Gradient of w4 w.r.t to Loss: -265.0# 使用forward
def forward(x):return x * w  #forwar过程import torch
from torch.autograd import Variable
x_data = [11.0, 22.0, 33.0]
y_data = [21.0, 14.0, 64.0]w = Variable(torch.Tensor([1.0]), requires_grad=True) # 初始化为任意值;# 训练前打印
print("predict (before training)", 4, forward(4).data[0])
# 定义损失函数
def loss(x, y):y_pred = forward(x)return (y_pred - y) * (y_pred - y)
#运行训练循环
for epoch in range(10):for x_val, y_val in zip(x_data, y_data):l = loss(x_val, y_val)l.backward()print("\tgrad: ", x_val, y_val, w.grad.data[0])w.data = w.data - 0.01 * w.grad.data# 训练后,人工设置梯度为0,否则梯度会累加;w.grad.data.zero_()print("progress:", epoch, l.data[0])#结果
grad: 11.0 21.0 tensor(-220.)
grad: 22.0 14.0 tensor(2481.6001)
grad: 33.0 64.0 tensor(-51303.6484)progress: 0 tensor(604238.8125)
progress: 1 …………………………………………
………………………………………………………………………………
#训练后的预测 权重已更新
print("predict (after training)", 4, forward(4).data[0])#结果
predict (after training) 4 tensor(-9.2687e+24)

   下面的程序展示了如何用Variable 变量从损失函数计算梯度:

a = Variable(FloatTensor([5]))
weights = [Variable(FloatTensor([i]), requires_grad=True) for i in (12, 53, 91, 73)]
w1, w2, w3, w4 = weights
b = w1 * a
c = w2 * a
d = w3 * b + w4 * c
Loss = (10 - d)
Loss.backward()

相关文章:

Pytorch(5)-----梯度计算

一、问题 如何使用Pytorch计算样本张量的基本梯度呢?考虑一个样本数据集,且有两个展示变量,在给定初始权重的基础上,如何在每次迭代中计算梯度呢? 二、如何运行 假设有x_data 和 y_data 列表,计算两个列表需…...

C#的膨胀之路:创新还是灭亡

开篇概述 C#,这门由微软推出的编程语言,自2000年诞生以来,以其简洁的语法、强大的功能和广泛的应用场景,赢得了我等程序员的热爱。它在.NET框架的加持下,展现出无与伦比的开发效率和性能。然而,随着时间的流…...

SpringBoot 过滤器和拦截器的区别

SpringBoot 过滤器和拦截器的区别 Spring拦截器(Interceptor)和过滤器(Filter)是Spring框架中用于处理请求的两种机制,虽然它们都可以在请求处理的不同阶段进行拦截和处理,但它们的工作原理和应用场景有所…...

协程执行顺序引发的问题

引言 在Golang中,因为协程执行的顺序是不固定的,如果不在代码里进行控制,可能就会导致预期外的输出。 本文通过分析一段代码的执行来介绍这种情况,以及可行的控制协程执行顺序的方法: sleep()waitGroup 实例分析 代…...

android webview调用js滚动到指定位置

一、activity import android.os.Bundle import androidx.appcompat.app.AppCompatActivity import com.tencent.smtt.sdk.WebView import com.tencent.smtt.sdk.WebViewClientclass MainActivity : AppCompatActivity() {private lateinit var webView: WebViewoverride fun …...

WPF 深入理解一、基础知识介绍

基础知识 本系列文章是对个人 B站 up 微软系列技术教程 记录 视频地址 https://www.bilibili.com/video/BV1HC4y1b76v/?spm_id_from333.999.0.0&vd_source0748f94a553c71a2b0125078697617e3 winform 与 wpf 异同 1.winform 项目结构 编辑主要是在 Form1.cs(页面)&#…...

腾讯云点播ugc upload | lack signature 问题处理

我犯一个很傻的错误 参考腾讯云官方文档:云点播 Web 端上传 SDK-开发指南-文档中心-腾讯云 进行开发,但是却报错了,始终找不到问题,错误提示:ugc upload | lack signature,意思是缺少签名或者签名失败&…...

计算机视觉实验二:基于支持向量机和随机森林的分类(Part one: 编程实现基于支持向量机的人脸识别分类 )

目录 一、实验内容 二、实验目的 三、实验步骤 四、实验结果截图 五、实验完整代码 六、报错及解决方案 PS:实验的运行速度受电脑性能影响,如遇运行卡顿请耐心等待。 一、实验内容 编程实现基于支持向量机的人脸识别分类,基本功能包括:Labeled Faces in th…...

5.什么是C语言

什么是 C 语言? C语言是一种用于和计算机交流的高级语言, 它既具有高级语言的特点,又具有汇编语言的特点 非常接近自然语言程序的执行效率非常高 C语言是所有编程语言中的经典,很多高级语言都是从C语言中衍生出来的, 例如:C、C#、Object-C、…...

DINO-DETR

DINO-DETR DETR收敛慢的问题1. Contrastive DeNoising Training(对比方法降噪训练)2. Mixed Query Selection(混合查询选择方法对锚点进行初始化)3. Look Forward Twice(两次前向方法)==DINO模型的传播过程,以及部分模块的改进==DETR收敛慢的问题 PnP-DETR(ICCV 2021) 改进了…...

Representation RL:HarmonyDream: Task Harmonization Inside World Models

ICML2024 paper code Intro 基于状态表征的model-based强化学习方法一般需要学习状态转移模型以及奖励模型。现有方法都是将二者联合训练但普遍缺乏对如何平衡二者之间的比重进行研究。本文提出的HarmonyDream便是通过自动调整损失系数来维持任务间的和谐,即在世界…...

Centos7系统下Docker的安装与配置

文章目录 前言下载Docker安装yum库安装Docker启动和校验配置Docker镜像加速卸载Docker 前言 此博客的内容的为自己的学习笔记,如果需要更具体的内容,可查看Docker官网文档内容 注意:以下命令在root管理员用户下运行,如果在普通用…...

无人机校企合作

有没有想过,无人机和校企合作能碰撞出怎样的火花?🔥今天就来给大家揭秘一下这个神秘组合! 无人机,作为现代科技的代表,已经渗透到我们生活的方方面面。而校企合作,更是推动科技创新、培养人才的…...

八爪鱼现金流-028,个人网站访问数据统计分析,解决方案

个人网站访问数据统计分析&#xff0c;解决方案 调研 结论&#xff1a;使用百度统计 步骤 1.注册百度统计 2.获取安装代码 3.在项目中&#xff0c;页面代码添加如下片段 <script>var _hmt _hmt || [];(function() {var hm document.createElement("script&…...

大厂面试官问我:布隆过滤器有不能扩容和删除的缺陷,有没有可以替代的数据结构呢?【后端八股文二:布隆过滤器八股文合集】

往期内容&#xff1a; 面试官问我&#xff1a;Redis处理点赞&#xff0c;如果瞬时涌入大量用户点赞&#xff08;千万级&#xff09;&#xff0c;应当如何进行处理&#xff1f;【后端八股文&#xff08;1&#xff09;】-CSDN博客 本文为【布隆过滤器八股文合集】初版&#xff0c…...

PHP米表域名出售管理源码带后台

源码介绍 html5米表源码PHP域名销售程序安装方法&#xff1a; 本站已测试,各项功能正常,功能易用,不复杂,非常适合个人米表使用 1、所有文件传至网站目录 2、浏览器执行http://你的访问网址/install 3、输入mysql帐号及密码信息&#xff0c;提交安装 源码截图 源码下载 …...

【开发12年码农教你】Android端简单易用的SPI框架-——-SPA

Service(priority 1) public class APrinterService implements IPrinterService { Override public void print() { System.out.println(“this is a printer service.”); } } 复制代码 B模块 —— BPrinterService Service(path“b_printer”, priority 2) public class…...

以太坊==MetaMask获取测试币最新网址

估算分数https://community.infura.io/t/unable-to-receive-sepolia-eth-from-faucet/7715 Gitcoin Passport 水龙头地址&#xff0c;填入自己的测试地址 水龙头项目地址 GitHub - pk910/PoWFaucet: Modularized faucet for EVM chains with different protection methods (…...

军用FPGA软件 Verilog语言的编码准测之触发器、锁存器

军用FPGA软件 Verilog语言的编码准测之触发器、锁存器 语言 &#xff1a;Verilg HDL EDA工具&#xff1a;ISE、Vivado、Quartus II 军用FPGA软件 Verilog语言的编码准测之触发器、锁存器一、引言二、基本编程规范之触发器强制准则1---禁止在同一个 always 语句中混合使用有复位…...

智能汽车 UI 风格独具魅力

智能汽车 UI 风格独具魅力...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

springboot 百货中心供应链管理系统小程序

一、前言 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;百货中心供应链管理系统被用户普遍使用&#xff0c;为方…...

进程地址空间(比特课总结)

一、进程地址空间 1. 环境变量 1 &#xff09;⽤户级环境变量与系统级环境变量 全局属性&#xff1a;环境变量具有全局属性&#xff0c;会被⼦进程继承。例如当bash启动⼦进程时&#xff0c;环 境变量会⾃动传递给⼦进程。 本地变量限制&#xff1a;本地变量只在当前进程(ba…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢

随着互联网技术的飞速发展&#xff0c;消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁&#xff0c;不仅优化了客户体验&#xff0c;还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用&#xff0c;并…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...