Pytorch(5)-----梯度计算
一、问题
如何使用Pytorch计算样本张量的基本梯度呢?考虑一个样本数据集,且有两个展示变量,在给定初始权重的基础上,如何在每次迭代中计算梯度呢?
二、如何运行
假设有x_data 和 y_data 列表,计算两个列表需要计算损失函数,一个forward通道以及一个循环中的训练。
forward函数计算权重矩阵和输入张量的乘积。
from torch import FloatTensor
from torch.autograd import Variable # 引入Variable方法是为了计算变量的梯度
a = Variable(FloatTensor([5]))
weights = [Variable(FloatTensor([i]), requires_grad=True) for i in (12, 53, 91, 73)]w1, w2, w3, w4 = weights #权重赋值
b = w1 * a
c = w2 * a
d = w3 * b + w4 * c
Loss = (10 - d)
Loss.backward() #从loss 开始反向传播for index, weight in enumerate(weights, start=1):gradient, *_ = weight.grad.data #取出梯度print(f"Gradient of w{index} w.r.t to Loss: {gradient}")Gradient of w1 w.r.t to Loss: -455.0
Gradient of w2 w.r.t to Loss: -365.0
Gradient of w3 w.r.t to Loss: -60.0
Gradient of w4 w.r.t to Loss: -265.0# 使用forward
def forward(x):return x * w #forwar过程import torch
from torch.autograd import Variable
x_data = [11.0, 22.0, 33.0]
y_data = [21.0, 14.0, 64.0]w = Variable(torch.Tensor([1.0]), requires_grad=True) # 初始化为任意值;# 训练前打印
print("predict (before training)", 4, forward(4).data[0])
# 定义损失函数
def loss(x, y):y_pred = forward(x)return (y_pred - y) * (y_pred - y)
#运行训练循环
for epoch in range(10):for x_val, y_val in zip(x_data, y_data):l = loss(x_val, y_val)l.backward()print("\tgrad: ", x_val, y_val, w.grad.data[0])w.data = w.data - 0.01 * w.grad.data# 训练后,人工设置梯度为0,否则梯度会累加;w.grad.data.zero_()print("progress:", epoch, l.data[0])#结果
grad: 11.0 21.0 tensor(-220.)
grad: 22.0 14.0 tensor(2481.6001)
grad: 33.0 64.0 tensor(-51303.6484)progress: 0 tensor(604238.8125)
progress: 1 …………………………………………
………………………………………………………………………………
#训练后的预测 权重已更新
print("predict (after training)", 4, forward(4).data[0])#结果
predict (after training) 4 tensor(-9.2687e+24)
下面的程序展示了如何用Variable 变量从损失函数计算梯度:
a = Variable(FloatTensor([5]))
weights = [Variable(FloatTensor([i]), requires_grad=True) for i in (12, 53, 91, 73)]
w1, w2, w3, w4 = weights
b = w1 * a
c = w2 * a
d = w3 * b + w4 * c
Loss = (10 - d)
Loss.backward()
相关文章:
Pytorch(5)-----梯度计算
一、问题 如何使用Pytorch计算样本张量的基本梯度呢?考虑一个样本数据集,且有两个展示变量,在给定初始权重的基础上,如何在每次迭代中计算梯度呢? 二、如何运行 假设有x_data 和 y_data 列表,计算两个列表需…...
C#的膨胀之路:创新还是灭亡
开篇概述 C#,这门由微软推出的编程语言,自2000年诞生以来,以其简洁的语法、强大的功能和广泛的应用场景,赢得了我等程序员的热爱。它在.NET框架的加持下,展现出无与伦比的开发效率和性能。然而,随着时间的流…...
SpringBoot 过滤器和拦截器的区别
SpringBoot 过滤器和拦截器的区别 Spring拦截器(Interceptor)和过滤器(Filter)是Spring框架中用于处理请求的两种机制,虽然它们都可以在请求处理的不同阶段进行拦截和处理,但它们的工作原理和应用场景有所…...
协程执行顺序引发的问题
引言 在Golang中,因为协程执行的顺序是不固定的,如果不在代码里进行控制,可能就会导致预期外的输出。 本文通过分析一段代码的执行来介绍这种情况,以及可行的控制协程执行顺序的方法: sleep()waitGroup 实例分析 代…...
android webview调用js滚动到指定位置
一、activity import android.os.Bundle import androidx.appcompat.app.AppCompatActivity import com.tencent.smtt.sdk.WebView import com.tencent.smtt.sdk.WebViewClientclass MainActivity : AppCompatActivity() {private lateinit var webView: WebViewoverride fun …...
WPF 深入理解一、基础知识介绍
基础知识 本系列文章是对个人 B站 up 微软系列技术教程 记录 视频地址 https://www.bilibili.com/video/BV1HC4y1b76v/?spm_id_from333.999.0.0&vd_source0748f94a553c71a2b0125078697617e3 winform 与 wpf 异同 1.winform 项目结构 编辑主要是在 Form1.cs(页面)&#…...
腾讯云点播ugc upload | lack signature 问题处理
我犯一个很傻的错误 参考腾讯云官方文档:云点播 Web 端上传 SDK-开发指南-文档中心-腾讯云 进行开发,但是却报错了,始终找不到问题,错误提示:ugc upload | lack signature,意思是缺少签名或者签名失败&…...
计算机视觉实验二:基于支持向量机和随机森林的分类(Part one: 编程实现基于支持向量机的人脸识别分类 )
目录 一、实验内容 二、实验目的 三、实验步骤 四、实验结果截图 五、实验完整代码 六、报错及解决方案 PS:实验的运行速度受电脑性能影响,如遇运行卡顿请耐心等待。 一、实验内容 编程实现基于支持向量机的人脸识别分类,基本功能包括:Labeled Faces in th…...
5.什么是C语言
什么是 C 语言? C语言是一种用于和计算机交流的高级语言, 它既具有高级语言的特点,又具有汇编语言的特点 非常接近自然语言程序的执行效率非常高 C语言是所有编程语言中的经典,很多高级语言都是从C语言中衍生出来的, 例如:C、C#、Object-C、…...
DINO-DETR
DINO-DETR DETR收敛慢的问题1. Contrastive DeNoising Training(对比方法降噪训练)2. Mixed Query Selection(混合查询选择方法对锚点进行初始化)3. Look Forward Twice(两次前向方法)==DINO模型的传播过程,以及部分模块的改进==DETR收敛慢的问题 PnP-DETR(ICCV 2021) 改进了…...
Representation RL:HarmonyDream: Task Harmonization Inside World Models
ICML2024 paper code Intro 基于状态表征的model-based强化学习方法一般需要学习状态转移模型以及奖励模型。现有方法都是将二者联合训练但普遍缺乏对如何平衡二者之间的比重进行研究。本文提出的HarmonyDream便是通过自动调整损失系数来维持任务间的和谐,即在世界…...
Centos7系统下Docker的安装与配置
文章目录 前言下载Docker安装yum库安装Docker启动和校验配置Docker镜像加速卸载Docker 前言 此博客的内容的为自己的学习笔记,如果需要更具体的内容,可查看Docker官网文档内容 注意:以下命令在root管理员用户下运行,如果在普通用…...
无人机校企合作
有没有想过,无人机和校企合作能碰撞出怎样的火花?🔥今天就来给大家揭秘一下这个神秘组合! 无人机,作为现代科技的代表,已经渗透到我们生活的方方面面。而校企合作,更是推动科技创新、培养人才的…...
八爪鱼现金流-028,个人网站访问数据统计分析,解决方案
个人网站访问数据统计分析,解决方案 调研 结论:使用百度统计 步骤 1.注册百度统计 2.获取安装代码 3.在项目中,页面代码添加如下片段 <script>var _hmt _hmt || [];(function() {var hm document.createElement("script&…...
大厂面试官问我:布隆过滤器有不能扩容和删除的缺陷,有没有可以替代的数据结构呢?【后端八股文二:布隆过滤器八股文合集】
往期内容: 面试官问我:Redis处理点赞,如果瞬时涌入大量用户点赞(千万级),应当如何进行处理?【后端八股文(1)】-CSDN博客 本文为【布隆过滤器八股文合集】初版,…...
PHP米表域名出售管理源码带后台
源码介绍 html5米表源码PHP域名销售程序安装方法: 本站已测试,各项功能正常,功能易用,不复杂,非常适合个人米表使用 1、所有文件传至网站目录 2、浏览器执行http://你的访问网址/install 3、输入mysql帐号及密码信息,提交安装 源码截图 源码下载 …...
【开发12年码农教你】Android端简单易用的SPI框架-——-SPA
Service(priority 1) public class APrinterService implements IPrinterService { Override public void print() { System.out.println(“this is a printer service.”); } } 复制代码 B模块 —— BPrinterService Service(path“b_printer”, priority 2) public class…...
以太坊==MetaMask获取测试币最新网址
估算分数https://community.infura.io/t/unable-to-receive-sepolia-eth-from-faucet/7715 Gitcoin Passport 水龙头地址,填入自己的测试地址 水龙头项目地址 GitHub - pk910/PoWFaucet: Modularized faucet for EVM chains with different protection methods (…...
军用FPGA软件 Verilog语言的编码准测之触发器、锁存器
军用FPGA软件 Verilog语言的编码准测之触发器、锁存器 语言 :Verilg HDL EDA工具:ISE、Vivado、Quartus II 军用FPGA软件 Verilog语言的编码准测之触发器、锁存器一、引言二、基本编程规范之触发器强制准则1---禁止在同一个 always 语句中混合使用有复位…...
智能汽车 UI 风格独具魅力
智能汽车 UI 风格独具魅力...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
Rapidio门铃消息FIFO溢出机制
关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系,以下是深入解析: 门铃FIFO溢出的本质 在RapidIO系统中,门铃消息FIFO是硬件控制器内部的缓冲区,用于临时存储接收到的门铃消息(Doorbell Message)。…...
