Matlab傅里叶谱方法求解一维波动方程
傅里叶谱方法求解基本偏微分方程—一维波动方程
一维波动方程
对于一根两端固定、没有受到任何外力的弦, 若只研究其中的一段, 在不太长的时间 里, 固定端来不及对这段弦产生影响, 则可以认为固定端是不存在的, 弦的长度为无限大。 这种无界 (−∞<x<∞)(-\infty<x<\infty)(−∞<x<∞) 弦的自由振动由式 (1)(1)(1) 描述。
∂2u∂t2=a2∂2u∂x2(1)\frac{\partial^2 u}{\partial t^2}=a^2 \frac{\partial^2 u}{\partial x^2} \tag{1} ∂t2∂2u=a2∂x2∂2u(1)
如果保证数值计算的区间足够大, 在一定时间内, 弦的振动范围始终没有超出计算区间 (或可以近似地这么认为), 那么就能够放心地使用周期性边界条件。取 a=1a=1a=1, 初始 条件为:
uut=0=2sech(x),∂u∂t∣t=0=0(2)u u_{t=0}=2 \operatorname{sech}(x),\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=0 \tag{2} uut=0=2sech(x),∂t∂ut=0=0(2)
在数学物理方法中, 无界弦的自由振动可由行波法求出解析解, 即达朗贝尔公式。 根据达朗贝尔公式, 从 t=0t=0t=0 开始, uuu 的初始状态 2sech(x)2 \operatorname{sech}(x)2sech(x) 将分裂为两个 sech 形的波, 分别向两边以速度 aaa 传播出去, 即正行波和反行波。下面用傅里叶缙方法求解无界弦 的自由振动问题, 并与达朗贝尔公式的预测进行比较。首先引入函数 vvv 对式 (1)(1)(1) 进行降阶:
{∂u∂t=v∂v∂t=a2∂2u∂x2(3)\left\{\begin{array}{l} \frac{\partial u}{\partial t}=v \\ \frac{\partial v}{\partial t}=a^2 \frac{\partial^2 u}{\partial x^2} \end{array}\right. \tag{3} {∂t∂u=v∂t∂v=a2∂x2∂2u(3)
对上式等号两边做傅里叶变换, 化为偏微分方程组:
{∂u^∂t=v^∂v^∂t=−a2k2u^(4)\left\{\begin{array}{l} \frac{\partial \hat{u}}{\partial t}=\hat{v} \\ \frac{\partial \hat{v}}{\partial t}=-a^2 k^2 \hat{u} \end{array}\right. \tag{4} {∂t∂u^=v^∂t∂v^=−a2k2u^(4)
这样就可以用 ode45 求解了, 详细代码如下:
主程序代码如下:
clear all; close all;L=80;N=256;
x=L/N*[-N/2:N/2-1];
k=(2*pi/L)*[0:N/2-1 -N/2:-1].';
% 初始条件
u=2*sech(x);ut=fft(u);
vt=zeros(1,N);uvt=[ut vt];
% 求解
a=1;t=0:0.5:20;
[t,uvtsol]=ode45('wave1D',t,uvt,[],N,k,a);
usol=ifft(uvtsol(:,1:N),[],2);
% 画图
p=[1 11 21 41];
for n=1:4subplot(5,2,n)plot(x,usol(p(n),:),'k','LineWidth',1.5),xlabel x,ylabel utitle(['t=' num2str(t(p(n)))]),axis([-L/2 L/2 0 2])
end
subplot(5,2,5:10)
waterfall(x,t,usol),view(10,45)
xlabel x,ylabel t,zlabel u,axis([-L/2 L/2 0 t(end) 0 2])
文件 wave1D.m 代码如下:
function duvt=wave1D(t,uvt,dummy,N,k,a)
ut=uvt(1:N);vt=uvt(N+[1:N]);
duvt=[vt;-a^2*(k).^2.*ut];
end
计算结果如图所示, 初始状态的波形分裂成两半, 并分别向 xxx 轴正方向和负方向 以速度 aaa 运动, 这和达朗贝尔公式给出的结论是一致的。

相关文章:
Matlab傅里叶谱方法求解一维波动方程
傅里叶谱方法求解基本偏微分方程—一维波动方程 一维波动方程 对于一根两端固定、没有受到任何外力的弦, 若只研究其中的一段, 在不太长的时间 里, 固定端来不及对这段弦产生影响, 则可以认为固定端是不存在的, 弦的长度为无限大。 这种无界 (−∞<x<∞)(-\infty<x&…...
py3中 collections.Counter()函数典型例题
文章目录py3中 collections 的常用STL**Counter()** 函数**defaultdict()** 函数**deque()** 函数**orderedDict()** 函数(缺例题)小结py3中 collections 的常用STL 对于这个工具包非常好用,尤其是其中的 Counter() 函数 使用次数颇为频繁&a…...
Linux部署达梦数据库超详细教程
陈老老老板🦸👨💻本文专栏:国产数据库-达梦数据库👨💻本文简述:本文讲一下达梦数据库的下载与安装教程(Linux版),超级详细。👨💻…...
ctfshow 每周大挑战 极限命令执行
《简单的命令执行题目》 这里感叹一下,g4佬是真好厉害,这次题目十分的难,嗯,对我这种菜鸡来说是这样的,想了一天,最后结束了,也还是没有想明白第五题的解法,我真是fw,到最…...
使用vue3,vite,less,flask,python从零开始学习硅谷外卖(16-40集)
严正声明! 重要的事情说一遍,本文章仅供分享,文章和代码都是开源的,严禁以此牟利,严禁侵犯尚硅谷原作视频的任何权益,我知道学习编程的人各种各样的心思都有,但这不是你对开源社区侵权的理由&am…...
坚持就是胜利
很多朋友,可能坚持了多年的同等学力申硕考试,依然没有通过。如果你感到困惑,感到迷茫,要坚信:坚持就能胜利。有很多人跟你一样,一直坚持在路上,没有停止脚步。 生活没有你想象的那么好ÿ…...
代码中出现转置 pose (c2w,外参矩阵) 或者转置 intrinsic (内参)矩阵的原因
在代码中见到 pose(c2w),intrinsic 矩阵的转置,觉得比较奇怪。 后来想了一下为什么。下面解释一下: 用 c2w 矩阵举例子。理论上,一个 c2w 左乘上 一个相机坐标系下的点 P的坐标,能够得到该点在…...
2023 年腾讯云服务器配置价格表出炉(2核2G/2核4G/4核8G/8核16G、16核32G)
腾讯云轻量应用服务器为轻量级的云服务器,使用门槛低,按套餐形式购买,轻量应用服务器套餐自带的公网带宽较大,4M、6M、7M、10M、14M及20M套餐可选,如果是云服务器CVM这个带宽价格就要贵很多了。 1、轻量应用服务器优惠…...
相机出图画面一半清晰,一半模糊的原因是什么?
1、问题背景:在做项目的过程中,有遇到过几次,出图后画面是一半清晰,一半模糊的现象,再重新对焦也是一样。但换了个镜头后就好了,这应该是镜头的质量问题,但导致镜头出现这种问题的具体原因是什么…...
Rust学习入门--【4】Rust 输出到命令行
Rust 语言中的打印“函数” 学习新的编程语言时,大家都喜欢打印“Hello World”。 在Rust中怎样将字符串打印出来呢? Rust 输出文字的方式主要有两种:println!() 和 print!()。 “函数”差异说明: 这两个"函数"都是向…...
Vector刷写方案—vFlash工具介绍
我是穿拖鞋的汉子,魔都中坚持长期主义的工科男! 今天魔都天气是连阴雨,滴滴答答的下个不停,心情也跟着潮湿起来!老规矩分享一段喜欢的文字,避免成为高知识低文化的工程师: 即使在真正的困境里,也一直提示自己,每次自恋不得超过十分钟! 那些看似无法度过得困境,不是…...
【阶段总结】《非结构化信息分析应用与实践(筹)》
《非结构化信息分析应用与实践(筹)》Part 1.知识储备一、机器学习 1.几种常见的有监督学习算法 2.几种常见的无监督学习算法 3.数据挖掘基础知识 30 问 二、神经网络与深度学习 1.MP神经网络模型(附实例代码讲解) 2.图解LST…...
七大设计原则之迪米特法则应用
目录1 迪米特法则介绍2 迪米特法则应用1 迪米特法则介绍 迪米特原则(Law of Demeter LoD)是指一个对象应该对其他对象保持最少的了解,又叫最少知 道原则(Least Knowledge Principle,LKP),尽量降低类与类之…...
curl命令用法精简整理
目录1.GET请求1.1 形式1:1.2 形式2:2.POST请求2.1 无入参:2.2 form传参(文件):2.3 json入参:2.4 json文件入参:3.请求计时3.1 time命令(Linux):3.…...
Fluent Python 笔记 第 5 章 一等函数
在 Python 中,函数是一等对象。编程语言理论家把“一等对象”定义为满足下述条件的程 序实体: 在运行时创建能赋值给变量或数据结构中的元素 • 能作为参数传给函数能作为函数的返回结果 5.1 把函数视作对象 会用 map。 5.2 高阶函数 接受函数为参数࿰…...
卡尔曼滤波器与DSP实现
卡尔曼滤波器是利用系统状态方程,结合测量结果对系统状态进行进行最优估计的算法。本文介绍它的主要公式,并举例在C6000 DSP上实现。 推荐资料 KalmanFilter.NETUnderstanding Kalman Filters卡尔曼滤波与组合导航原理 “If you can’t explain it sim…...
引入QQ邮箱发送验证码进行安全校验
最近想给自己的项目在注册时加点安全校验,本想着使用短信验证码,奈何囊中羞涩只能退而求次改用QQ邮箱验证注册~ 一.需求分析 场景:用户输入自己的邮箱,点击获取验证码,后台会发送一封邮件到对应邮箱中。 分析&#x…...
【c++】数组
文章目录一维数组定义方式数组名案例案例1:元素逆置案例2:冒泡排序二维数组定义方式数组名案例:考试成绩统计数组特点: 1、每个数据元素放在一块连续的内存空间中; 2、数组中每个数据元素都是相同数据类型;…...
线程池的简单实现:Java线程池初学者必读指南
"作为一名Java开发者,是否曾经遇到过多线程并发的问题?线程数量过多时,会导致资源浪费,应用性能下降,甚至发生线程死锁的情况。那么,有没有一种方法可以有效地管理线程,避免这些问题呢&…...
【C#】[带格式的字符串] 复合格式设置字符串与使用 $ 的字符串内插 | 如何格式化输出字符串
复合格式输出 string name "Fred"; String.Format("Name {0}, hours {1:hh}", name, DateTime.Now);通过指定相同的参数说明符,多个格式项可以引用对象列表中的同一个元素。 例如,通过指定“0x{0:X} {0:E} {0:N}”等复合格式字符…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)
船舶制造装配管理现状:装配工作依赖人工经验,装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书,但在实际执行中,工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...
