当前位置: 首页 > news >正文

TypeScript 基础学习之泛型和 extends 关键字

b8fd221fb5967b382ea0fac973918c5a.gif

越来越多的团队开始使用 TS 写工程项目, TS 的优缺点也不在此赘述,相信大家都听的很多了。平时对 TS 说了解,仔细思考了解的也不深,借机重新看了 TS 文档,边学习边分享,提升对 TS 的认知的同时,也希望能在平时的工作中能用上,少写一点 any。

026813f6813fd567bbe8ba5c14d8d0f2.png

泛型

A major part of software engineering is building components that not only have well-defined and consistent APIs, but are also reusable. Components that are capable of working on the data of today as well as the data of tomorrow will give you the most flexible capabilities for building up large software systems.

In languages like C# and Java, one of the main tools in the toolbox for creating reusable components is generics, that is, being able to create a component that can work over a variety of types rather than a single one. This allows users to consume these components and use their own types.

我们工作的大部分内容是构建组件,定义有效、一致并且可复用的API很重要。组件能够处理当前的数据,又能考虑兼容很多未来的数据,这样的组件能提高工作效率,也能在构建软件系统的时候提供非常灵活的能力。

  基本使用

通过泛型可以定义通用的数据结构,增加 TypeScript 代码中类型的通用性。


  • 处理函数

先看一个具体的例子,感受一下泛型的应用。

首先定一个 log 函数,功能很简单把传入的参数直接 return 就行,函数参数类型是 string,那么返回值也是 string 类型。

function log(arg: string): string {return arg;
}

当其他地方也想使用这个函数,但是参数入参数类型是 number,这个时候我们也许可以这么做:

function log(arg: string | number): string | number {return arg;
}

当有更多的地方要使用这个函数的时候,那这个函数的参数类型定义和返回值类型定义将会变得无比冗长,或者可能就直接使用 any  来解决,当使用 any 的时候就失去了使用 TS 最初的初心了。

这个时候泛型出现了,能解决输入输出一致的问题,我们可以这样写:

function log<T>(arg: T): T {return arg;
}

这个 log 函数通过泛型来约束输入输出一致性的问题,把动态的泛型类型抛给函数的使用者,我们只需要保证输入输出的一致性就可以,还能支持任何类型。泛型中的 T 就像一个占位符,或者说一个变量,在使用的时候把定义的类型像参数一样传入就可以了。

我们在使用的时候可以有两种方式指定类型。第一,是直接定义要使用的类型,第二,是默认 TS 的类型推断,TS自动推导出要传入的类型:

log<string>('log')  // 定义 T 为 stringprint('log')  // TS 的类型推断,自动推导类型为 T 的类型为 string
  • 默认参数

在 JS 中对于一个函数入参,可以使用默认参数来简化当没有传参数时候的默认值,在 TS  中我们可以这样使用:

function log<T = string>(arg: T): T {return arg;
}

当没有传泛型参数的时候 T 的默认类型是 string 类型,就如果 JS 中的函数默认参数类似的用法

  • 多个参数

当函数中有多个参数的时候可以这样使用:

function log<T, U>(type: T, info: U): [T, U] {return [type, info];
}

通过在泛型定义多个对应位置的类型就可以获取到相应的泛型传参来对输入输出做一些处理。

  • 函数返回值

泛型不仅可以很方便地约束函数的参数类型,还可以用在函数执行副作用操作的时候。发送请求是我们使用的很多的操作,我们会有一个通用的发送请求的异步方法,请求不同的 url 会返回不同的类型数据,那么我们可以这样使用。

function request<T>(url: string): Promise<T> {return fetch(url).then(res => res.json())
}interface IUserInfo {name: string;age: number;avatar: string;gender: 'male' | 'female';city: string;
}request<IUserInfo>('/getuserinfo').then(res => {console.log(res)
});

这个时候返回的数据 TS 就会识别出 res 的类型,对解下来的代码编写会有很大帮助。

  应用

上面的一些小例子,我们对泛型有了一些了解,在平时我们可以这样使用。

  • 泛型约束类

定一个栈,有出栈和入栈两个方法,规定了出栈和入栈的元素类型必须一致。

class Stack<T> {private data: T[] = []push(item:T) {return this.data.push(item)}pop(): T | undefined {return this.data.pop()}
}
在使用的使用传入类型生成实例,在调用对应的出栈和入栈方法的时候入参数类型不对就会报错,从而约束了栈的元素类型。

const test1 = new Stack<number>()
const test2 = new Stack<string>()


  • 泛型约束接口

function request<T>(url: string): Promise<T> {return fetch(url).then(res => res.json())
}interface IUserInfo<T> {name: string;age: number;avatar: string;gender: 'male' | 'female';address: T;
}request<IUserInfo<string>>('/getuserinfo').then(res => {console.log(res)
});

这样使用 IUserInfo 的 address 的类型就是 string,让 interface 更灵活。

  • Pick

Pck 是 TS 内置的函数,作用是挑选出对象类型 T 中 U 对应的属性和类型,创建一个新的对象类型。

type Pick<T, K extends keyof T> = {[P in K]: T[P];
};interface IUserInfo {name: string;age: number;avatar: string;gender: 'male' | 'female';
}type Test = Pick<IUserInfo, 'name'> // { name: string }
  • Omit

与Pick的功能是互补的,挑选出对象类型 T 中不在 U 中的属性和类型,创建一个新的对象类型。

type Omit<T, K extends keyof any> = Pick<T, Exclude<keyof T, K>>;interface IUserInfo {name: string;age: number;avatar: string;gender: 'male' | 'female';
}type Test = Omit<IUserInfo, 'name' | 'avatar' | 'gender'> // { age: number }

  总结

泛型,从字面上来理解,就是一般的,广泛的,具有通用性的。

泛型是指在定义函数、接口或类的时候,不预先指定具体类型,而是在使用的时候再指定类型。

泛型中的 T 就像一个占位符、或者说一个变量,在使用的时候可以把定义的类型像参数一样传入,它可以原封不动地输出。

8d13bb66decf36ff3af49425db89849a.png

extends

本文主要整理 extends 关键字在 typescript中的相关用法,平时在看一些复杂的 TS 类型的时候经常会看到使用 extends 这个关键字

  继承类型

TS 中的 extends 关键字第一个用法可以理解成 JS 中相似的用法继承类型。
interface IName {  name: string;
}interface IGender {gender: string;
}interface IPerson extends IName, IGender {age: number;
}const corgi: IPerson = {name: 'corgi',gender: 'female',age: 18,
}

以上示例中,IName 和 IGender 两个接口,分别定义了 name 属性和 gender 属性,IPerson 则使用extends 关键字多重继承的方式,继承了 IName 和 IGender,同时定义了自己的属性age,此时 IPerson 除了自己的属性外,还同时继承了 IName 和 IGender 的属性。


  条件判断

When the type on the left of the extends is assignable to the one on the right, then you’ll get the type in the first branch (the “true” branch); otherwise you’ll get the type in the latter branch (the “false” branch).

当 extends 左边的类型可以赋值给右边的类型时,你会在第一个分支中获取获得这个类型(true),否你会在第二个个分支中获得这个类型(false)

  • 普通条件类型

先来直接看个例子

// 示例1
interface IAnimal {name: string;
}interface IDog extends IAnimal {color: string;
}// A的类型为string
type Test = IDog extends IAnimal ? string : number;

extends 的条件判断和 JS 中的三元表达式很类似,如果问号前面的条件为真就把 string 类型赋值给 A,否则就把 number 类型赋值给 A。那么问号前面的条件判断真假的逻辑是什么呢?就像上面的那段英文描述一样,当extends 左边的类型可以赋值给右边的类型的时候,就会真,否则为假。

在上面的例子中,IDog 是 IAnimal 的子类,子类比父类的限制更多,如果能满足子类的条件约束,就一定能满足父类的条件约束,IDog 类型的值可以满足 IAnimal 类型,判断结果为真,Test 的类型为 string。

再来一个例子:

// 示例2
interface I1 {name: string
}interface I2 {name: stringage: number
}
// A的类型为string
type Test = I2 extends I1 ? string : number

这个例子,代入上面的解法来看就是,能满足 I2 类型约束的值也满足 I1 类型约束,判断结果为真,Test 的类型为 string。

多看几个例子:

type Test1 = 'x' extends 'x' ? "true" : "false";  // "true"
type Test2 = 'x' extends 'y' ? "true" : "false"  // "false"
type Test3 = 100 extends 100 ? "true" : "false"  // "true"
type Test4 = 200 extends 100 ? "true" : "false"  // "false"
type Test5 = {} extends {name:string} ? "true" : "false"  // "false"
type Test6 = {name:string} extends {} ? "true" : "false"  // "true"

按照上面的解释能够很好的解释出最后的结果。

  • 分配条件类型

再多看几个例子:

type Test1 = 'x' extends 'x' ? string : number; // string
type Test2 = 'x' | 'y' extends 'x' ? string : number; // numbertype P<T> = T extends 'x' ? string : number;
type Test3 = P<'x' | 'y'> // tring | numbertype P<T> = 'x' extends T ? string : number;
type Test4 = P<'x' | 'y'> // tring

这里就先把最后的结果直接给出来了,看到 Test1、Test2 和 Test4 还能理解,但是 Test3 的结果为什么就是 string |nunber这个类型了呢?同样的按照泛型传参数,按照直觉来说,Test3 和 Test2 应该是一样的结果,为什么结果差异这么大呢?

这里导致结果和直觉不一样的原因就是所谓的分配条件类型。

When conditional types act on a generic type, they become distributive when given a union type

当 extends 前面的参数是一个泛型类型,当传入的参数是一个联合类型的时候,就是使用分配律计算最后的结果,分配律就是我们从数学中学到的分配律。把联合类型中的每个类型代入条件判断得到每个类型的结果,再把每个类型的结果联合起来,得到最后的类型结果。

那么就可以按照这个解法来代入 Test3 的解释原因:

extends 前面的参数 T 是泛型参数,Test3 中 泛型代入的的 x | y这个联合类型,这个时候就触发了分配条件类型,来使用分配律

'x' extends 'x' ? string : number; // string
'y' extends 'x' ? string : number; // number
type Test3 = string | number

按照分配条件来看最后的结果恍然大悟,总之要触发分配条件类型要满足两个条件,第一,extends 前面的参数是泛型类型,第二,参数是联合类型。

条件分配类型是系统默认的行为,那么在某些需求不想要出发条件分配类型应该怎么办呢?

看下面的例子:

type P<T> = [T] extends ['x'] ? string : number;
type Test = P<'x' | 'y'> // number

这个使用使用了[]这个符号把泛型类型参数包起来,这个时候 extends 前面的参数就变成这个样子['x' | 'y'],不满足触发分配条件类型的条件,按照普通条件来判断,得到最后的结果为 number。


  • never

来个例子看看:

// never是所有类型的子类型
type Test1 = never extends 'x' ? string : number; // stringtype P<T> = T extends 'x' ? string : number;
type Test2 = P<never> // never

上面直接给出了最后的结果,但是为什么看起来 Test2 最后的结果又和直觉中不太一样,never 不是联合类型,直接代入条件类型之后,按理来说 Test2 和 Test1 的结果应该一样才对。

事实上,never 被认为是空的联合类型,也就是没有任何项的联合类型,所以还是满足上面的分配条件类型,因为没有任何联合项可以分配,所以P<T>根本就没有执行,就和永远没有返回的函数一样,属于 never 类型。

按照上面的条件,可以这样子来阻止分配条件类型。

type P<T> = [T] extends ['x'] ? string : number;
type Test = P<never> // string

  应用

  • Exclude

type Exclude<T, U> = T extends U ? never : T;

Exclude 是 TS 内置的应用方法,作用是从第一个联合类型参数 T 中,把第二个联合类型参数 U 出现的联合项去掉。

type Test = Exclude<'A' | 'B', 'A'> // 'B'

其实就是应用了分配条件类型:

type Test = Exclude<'A', 'A'> | type Test = Exclude<'B', 'A'>type Test = 'A' extends 'A' ? never : 'A' | 'B' extends 'A' ? never : 'B'
type Test = never | 'B'
type Test = 'B'
  • Extract

type Exclude<T, U> = T extends U ? T : never;

Extract 是 TS 内置的应用方法,作用是从第二个联合类型参数 U 中,把第一个联合类型参数 T 出现的联合项提取出来。

type Test = Exclude<'A' | 'B', 'A'> // 'A'

其实就是应用了分配条件类型。

type Test = Exclude<'A', 'A'> | type Test = Exclude<'B', 'A'>
type Test = 'A' extends 'A' ? 'A' : never | 'B' extends 'A' ? 'B' : never
type Test = 'A' | never
type Test = 'A'

  总结

在 typescript 中的 extends 关键字主要用法,就是继承类型,结合三元表达式来完成更多的类似函数的应用方法,在三元表达式中还要注意分配条件类型的应用。

文章为笔者在学习过程中做的笔记,如果有误,欢迎指正。

2c00ebab2d61f4faab500dcbfe6056f7.png

团队介绍

我们是大淘宝技术行业与商家技术团队,是消费电子线下业务,主要面向线下门店的分销、经营、零售相关的产品。技术侧属于大淘宝技术前端团队,技术产品服务阿里巴巴整个集团亿万级别的业务。

¤ 拓展阅读 ¤

3DXR技术 | 终端技术 | 音视频技术

服务端技术 | 技术质量 | 数据算法

相关文章:

TypeScript 基础学习之泛型和 extends 关键字

越来越多的团队开始使用 TS 写工程项目&#xff0c; TS 的优缺点也不在此赘述&#xff0c;相信大家都听的很多了。平时对 TS 说了解&#xff0c;仔细思考了解的也不深&#xff0c;借机重新看了 TS 文档&#xff0c;边学习边分享&#xff0c;提升对 TS 的认知的同时&#xff0c;…...

《数据分析-JiMuReport04》JiMuReport报表设计入门介绍-页面优化

报表设计 2 页面优化 如上图所示的报表&#xff0c;仅仅是展示数据&#xff0c;不过这样看起来似乎太草率了&#xff0c;所以再优化一下吧 保存报表后&#xff0c;在积木报表中就可以看到对应的报表文件 此时我们如果还需要编辑报表&#xff0c;就点击这个报表即可 2.1 居中…...

带头双向循环链表及链表总结

1、链表种类大全 1、链表严格来说可能用2*2*28种结构&#xff0c;从是否带头&#xff0c;是否循环&#xff0c;是否双向三个角度区分。 2、无头单向循环链表一般不会在实际运用中直接存储数据&#xff0c;而会作为某些更复杂结构的一个子结构&#xff0c;毕竟它只在头插、头删…...

(八十)MySQL是如何基于各种规则去优化执行计划的?(中)

今天我们来讲一下子查询是如何执行的&#xff0c;以及他的执行计划是如何优化的。比如说类似于下面的SQL语句&#xff1a; select * from t1 where x1 (select x1 from t2 where idxxx) 这就是一个典型的子查询 也就是说上面的SQL语句在执行的时候&#xff0c;其实会被拆分为…...

第一章:命题与命题公式

1.命题与命题联结词 1.命题与命题的表示 1. 命题 由一个或几个已知的前提,推导出来一个未知的结论的思维过程称为推理,推理的基本要素就是表达这些前提的一些陈述句,可以将这些陈述句理解为命题。 (1)地球是行星 (2)8不是素数 (3)1 + 2 = 22. 命题真值 一个陈述句不…...

c/c++开发,无可避免的操作符operator(篇一),操作符重载

一、操作符号重载 虽然c/c内置了大量各类操作符&#xff0c;开发者可以很方便将其应用数学运算、成员访问、类型转换、内存分配等执行语句中&#xff0c;但很多时候&#xff0c;也需要根据项目应用需要&#xff0c;通过操作符重载&#xff0c;能够针对类类型的操作数定义不同的…...

【7.MySQL行格式存储】

1.MySQL数据存放文件 我们每创建一个 database&#xff08;数据库&#xff09; 都会在 /var/lib/mysql/ 目录里面创建一个以 database 为名的目录,创建一个student表 [rootxiaodainiao ~]#ls /var/lib/mysql/my_test db.opt student.frm student.ibddb.opt&#xff1a;用…...

【Linux】线程实例 | 简单线程池

今天来写一个简单版本的线程池 1.啥是线程池 池塘&#xff0c;顾名思义&#xff0c;线程池就是一个有很多线程的容器。 我们只需要把任务交到这个线程的池子里面&#xff0c;其就能帮我们多线程执行任务&#xff0c;计算出结果。 与阻塞队列不同的是&#xff0c;线程池中内有…...

ATAC-seq 数据分析实战

文章目录一、 ATAC-seq原理和基础知识1. ATAC-seq原理2. Tn5转座子1. 转座概念2. 参与分子1. 转座子&#xff08;1&#xff09; 简化的转座子结构&#xff08;2&#xff09; Tn5转座子的结构2. 转座酶3. 转座过程二、数据比对和过滤一、 ATAC-seq原理和基础知识 1. ATAC-seq原…...

设计模式-第13章(状态模式)

状态模式状态模式状态模式的好处和用处工作状态状态模式 状态模式&#xff08;State&#xff09;&#xff0c;当一个对象的内在状态改变时允许改变其行为&#xff0c;这个对象看起来像是改变了其类。 状态模式主要解决的是当控制一个对象状态转换的条件表达式过于复杂时的情况…...

ReentrantLock源码分析(一)加锁流程分析

一、ReetrantLock的使用示例 static ReentrantLock lock new ReentrantLock(); public static void main(String[] args) throws InterruptedException { new Thread(ClassLayOutTest::reentrantLockDemo, "threadA").start(); Thread.sleep(1000);…...

【C++】list的模拟实现

文章目录1.list 底层2. list的模拟实现1. list_node 类设计2. list类如何调用类型3 .push_back(正常实现)4. 迭代器的实现第一个模板参数Tconst迭代器第二个模板参数Ref第三个模板参数Ptr对list封装的理解5. insert6.push_back与 push_front(复用)7. erase8. pop_back与pop_fro…...

Python连接es笔记三之es更新操作

这一篇笔记介绍如何使用 Python 对数据进行更新操作。 对于 es 的更新的操作&#xff0c;不用到 Search() 方法&#xff0c;而是直接使用 es 的连接加上相应的函数来操作&#xff0c;本篇笔记目录如下&#xff1a; 获取连接update()update_by_query()批量更新UpdateByQuery()…...

哪个牌子的蓝牙耳机音质好?音质比较好的蓝牙耳机排名

蓝牙耳机经过多年发展&#xff0c;无论是在外观设计还是性能配置上都有很大的进步&#xff0c;越来越多的蓝牙耳机开始注重音质表现&#xff0c;逐渐有HIFI音质、无损音质出现在大众视野。那么哪个牌子的蓝牙耳机音质好&#xff1f;接下来&#xff0c;我来给大家分享几款音质比…...

Qt实用技巧:Qt中浮点数的相等比较方式(包括单精度和双精度)

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/129464152 红胖子(红模仿)的博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV、OpenGL、ffmpeg、OSG、单片机、软…...

【数据结构初阶】双向循环链表

目录一.链表的分类二.与单链表相比三.实现增删查改1.双向循环链表结构的创建2.创建新节点3.初始化链表4.头插和尾插5.判断链表是否为空6.头删和尾删7.打印函数8.查找函数9.删除pos位置节点10.在pos前位置插入数据11.优化升级一.链表的分类 链表可有根据单向双向、有无哨兵位、…...

0104BeanDefinition合并和BeanClass加载-Bean生命周期详解-spring

文章目录1 前言2 BeanDefinition合并2.1 BeanDefinition合并在做什么&#xff1f;2.2 BeanDefinition怎么合并2.3 示例演示3 Bean Class 加载后记1 前言 下面要介绍的阶段&#xff0c;都是在调用getBean()从容器中获取bean对象的过程中发生的操作&#xff0c;我们需要更多的去…...

Java集合进阶(三)

文章目录一、Map1. 概述2. 基本功能3. 遍历4. 遍历学生对象5. 集合嵌套6. 统计字符出现次数二、Collections1. 常用方法2. 学生对象排序三、模拟斗地主一、Map 1. 概述 Interface Map<K, V>&#xff1a;K 是键的类型&#xff0c;V 是值的类型。 将键映射到值的对象&…...

【网络】什么是RPC?RPC与HTTP有什么关系?

文章目录RPC是什么RPC和HTTP的关系和区别[附]关于REST论文中提到的"HTTP不是RPC"重点参考 凤凰架构-远程过程调用 既然有HTTP为什么还要有RPC&#xff1f; RPC是什么 RPC(Remote Procedure Call)&#xff1a;即远程过程调用&#xff0c;目的是为了让计算机能够跟调用…...

[手撕数据结构]栈的深入学习-java实现

CSDN的各位uu们你们好,今天千泽带来了栈的深入学习,我们会简单的用代码实现一下栈, 接下来让我们一起进入栈的神奇小世界吧!0.速览文章一、栈的定义1. 栈的概念2. 栈的图解二、栈的模拟实现三.栈的经典使用场景-逆波兰表达式总结一、栈的定义 1. 栈的概念 栈&#xff1a;一种…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

STM32F4基本定时器使用和原理详解

STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...

TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案

一、TRS收益互换的本质与业务逻辑 &#xff08;一&#xff09;概念解析 TRS&#xff08;Total Return Swap&#xff09;收益互换是一种金融衍生工具&#xff0c;指交易双方约定在未来一定期限内&#xff0c;基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...