【Python/Pytorch 】-- K-means聚类算法

文章目录
文章目录
- 00 写在前面
- 01 基于Python版本的K-means代码
- 02 X-means方法
- 03 最小二乘法简单理解
- 04 贝叶斯信息准则
00 写在前面
时间演变聚类算法:将时间演变聚类算法用在去噪上,基本思想是,具有相似信号演化的体素具有相似的模型参数值,并且由机器学习决定的集群数量远远小于体素的数量。因此,对一个聚类进行平均可以大大提高聚类级逆解的信噪比,这可以用作体素级优化的鲁棒初始猜测。
在该演变算法的基础上,总结了K-means算法、X-means算法、最小二乘法、贝叶斯信息准则
01 基于Python版本的K-means代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs# 生成具有三个簇的示例数据
n_samples = 300
n_features = 2
centers = 3
cluster_std = 1.0x, y = make_blobs(n_samples=n_samples, n_features=n_features, centers=centers, cluster_std=cluster_std, random_state=42)# 设置K值(簇的数量)
k = 3# 初始化KMeans算法
kmeans = KMeans(n_clusters=k, random_state=42)# 进行聚类
kmeans.fit(X)# 获取聚类结果
labels = kmeans.labels_
centroids = kmeans.cluster_centers_# 绘制聚类结果
plt.figure(figsize=(8, 6))
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', marker='o', edgecolor='k', s=50)
plt.scatter(centroids[:, 0], centroids[:, 1], c='red', marker='x', s=200, linewidths=3, zorder=10)
plt.title('K-means Clustering')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.grid(True)
plt.show()

02 X-means方法
传统的K-means聚类算法需要预先确定聚类的数量K。在这里,使用了一种称为X-means的方法,该方法能够自动选择K。X-means方法通过两个步骤反复迭代来选择合适的聚类数量K。
- 步骤1:
- 首先执行传统的K-means聚类,给定一个初始的聚类数量。
- 计算贝叶斯信息准则(BIC),BIC是聚类对数似然和对K的惩罚项的和。
- 随着K的增加,拟合的优度(对数似然)增加,但过拟合的可能性也增加。惩罚项用来减少这种可能性。
- 步骤2:
- 每个聚类的质心(质心)被替换为两个子质心,并在该聚类内使用这些子质心作为初始猜测进行局部K-means(K = 2)。
- 计算该聚类的BIC:如果BIC较大,则进行替换,否则保留“父”质心。
- 重复步骤1和步骤2,直到整体BIC不再增加或 K达到预先设定的最大值为止。
- 在这项研究中,初始聚类数为1,最大聚类数为50。
03 最小二乘法简单理解
最小二乘法(Least Squares Method, LSM)是统计学和数据分析中常用的一种方法,用于拟合数据模型。它的本质是一个优化过程,因为它通过最小化目标函数来找到模型参数的最优解。
(1)最小二乘法的基本思想
假设我们有一组观测数据点(x1, y1),(x2, y2),…,(xn, yn),我们希望找到一个函数 f(x)来拟合这些数据点。最简单的情况是线性拟合,即找到一个直线模型 y=ax+b,使得该直线尽可能靠近所有观测数据点。
最小二乘法的目标是最小化以下目标函数(误差的平方和):
S ( a , b ) = ∑ i = 1 n ( y i − ( a x i + b ) ) 2 S(a,b) = {\textstyle \sum_{i=1}^{n}} (y_{i}-(ax_{i}+b) )^{2} S(a,b)=∑i=1n(yi−(axi+b))2
其中,yi是观测值,axi+b是预测值。
(2)最小二乘法的优化过程
- 步骤1:
定义目标函数:目标函数S(a,b) 表示预测值与观测值之间的误差的平方和。 - 步骤2:
求导数:为了找到使目标函数最小的参数 a 和b,我们对 S(a, b) 分别对a 和 b 求偏导数,并将其设为零,得到一组方程:
∂ S ∂ a = − 2 ∑ i = 1 n x i ( y i − a x i − b ) = 0 \frac{\partial S}{\partial a} = -2 {\textstyle \sum_{i=1}^{n}} x_{i}(y_{i}-ax_{i}-b)=0 ∂a∂S=−2∑i=1nxi(yi−axi−b)=0
∂ S ∂ b = − 2 ∑ i = 1 n ( y i − a x i − b ) = 0 \frac{\partial S}{\partial b} = -2 {\textstyle \sum_{i=1}^{n}} (y_{i}-ax_{i}-b)=0 ∂b∂S=−2∑i=1n(yi−axi−b)=0 - 步骤3:
解方程:通过求解上述方程组,可以得到最优参数 a 和 b 的值。具体求解过程可以得到如下结果:
a = n ∑ i = 1 n x i y i − ∑ i = 1 n x i ∑ i = 1 n y i n ∑ i = 1 n x i 2 − ( ∑ i = 1 n x i ) 2 a = \frac{n {\textstyle \sum_{i=1}^{n}}x_{i}y_{i}-\sum_{i=1}^{n}x_{i}\sum_{i=1}^{n}y_{i} }{n {\textstyle \sum_{i=1}^{n}}x_{i}^{2}-({\textstyle \sum_{i=1}^{n}}x_{i})^{2} } a=n∑i=1nxi2−(∑i=1nxi)2n∑i=1nxiyi−∑i=1nxi∑i=1nyi
b = ∑ i = 1 n y i − a ∑ i = 1 n x i n b = \frac{{\textstyle \sum_{i=1}^{n}}y_{i}-a\sum_{i=1}^{n}x_{i}}{n} b=n∑i=1nyi−a∑i=1nxi - 步骤4:
优化的本质:最小二乘法的过程实际上是通过优化方法来最小化目标函数。优化在这里的意思是找到使目标函数达到最小值的参数组合。在最小二乘法中,这个目标函数是误差的平方和,优化过程就是通过求解导数来找到误差平方和的最小值。
04 贝叶斯信息准则
贝叶斯信息准则(Bayesian Information Criterion, BIC)是一种统计量,用于模型选择,特别是在评估模型复杂性和拟合优度之间的平衡时使用。
BIC 的计算公式如下:
B I C = − 2 l n ( L ) + k l n ( n ) BIC=-2ln(L) +kln(n) BIC=−2ln(L)+kln(n)
其中:
- ln(L)是模型的对数似然(log-likelihood)。对数似然度量了模型对数据的拟合优度。对数似然值越大,说明模型越能解释数据。
- k是模型的参数数量。在聚类模型中,参数数量通常包括聚类数K和每个聚类的参数(如均值和方差)。k越大,模型越复杂。
- n是样本数量。样本数量是指数据中的观测值个数。
- BIC 的公式中,-2ln(L)代表了模型的拟合优度,值越小,拟合越好。kln(n)是对模型复杂性的惩罚项,随着参数数量 k 和样本数量n的增加,惩罚项也增加。这个项用来防止过拟合。BIC 的值越小,模型越好。因此,在选择模型时,希望找到使 BIC 最小的模型。
相关文章:
【Python/Pytorch 】-- K-means聚类算法
文章目录 文章目录 00 写在前面01 基于Python版本的K-means代码02 X-means方法03 最小二乘法简单理解04 贝叶斯信息准则 00 写在前面 时间演变聚类算法:将时间演变聚类算法用在去噪上,基本思想是,具有相似信号演化的体素具有相似的模型参数…...
【Eureka】介绍与基本使用
Eureka介绍与基本使用 一个简单的Eureka服务器的设置方法:1 在pom.xml中添加Eureka服务器依赖:2 在application.properties或application.yml中添加Eureka服务器配置:3 创建启动类,使用EnableEurekaServer注解启用Eureka服务器&am…...
SpringBoot+Vue集成富文本编辑器
1.引入 我们常常在各种网页软件中编写文档的时候,常常会有富文本编辑器,就比如csdn写博客的这个页面,包含了富文本编辑器,那么怎么实现呢?下面来详细的介绍! 2.安装wangeditor插件 在Vue工程中,…...
React@16.x(34)动画(中)
目录 3,SwitchTransition3.1,原理3.1.2,key3.1.2,mode 3.2,举例3.3,结合 animate.css 4,TransitionGroup4.1,其他属性4.1.2,appear4.1.2,component4.1.3&…...
ONLYOFFICE 8.1:全面升级,PDF编辑与本地化加强版
目录 📘 前言 📟 一、什么是 ONLYOFFICE 桌面编辑器? 📟 二、ONLYOFFICE 8.1版本新增了那些特别的实用模块? 2.1. 轻松编辑器 PDF 文件 2.2. 用幻灯片版式快速修改幻灯片 2.3. 无缝切换文档编辑、审阅和查…...
C++ 入门
前言 c的发展史: C的起源可以追溯到1979年,当时Bjarne Stroustrup在贝尔实验室开始开发一种名为“C with Classes”的语言。以下是C发展的几个关键阶段: 1979年:Bjarne Stroustrup在贝尔实验室开始开发“C with Classes”。1983…...
GPT-5发布倒计时:AI智能从高中生到博士生的跨越
嘿,小伙伴们!最近有个大新闻,OpenAI的首席技术官米拉穆拉蒂在一次采访中透露,GPT-5将在一年半后发布。她把这个升级比作从聪明的高中生到博学的博士生的飞跃,听起来是不是很酷? 现在GPT-4o还有不少功能没上…...
Docker 拉取镜像失败处理 配置使用代理拉取
解决方案 1、在 /etc/systemd/system/docker.service.d/http-proxy.conf 配置文件中添加代理信息 2、重启docker服务 具体操作如下: 创建 dockerd 相关的 systemd 目录,这个目录下的配置将覆盖 dockerd 的默认配置 代码语言:javascript 复…...
视频汇聚安防综合管理系统EasyCVR平台GB28181设备注册未上线的原因排查与解决
视频汇聚安防综合管理平台EasyCVR视频监控系统基于云边端架构,可支持海量视频汇聚集中管理,能提供视频监控直播、云端录像、云存储、录像检索与回看、告警(协议告警/智能告警/1400视图库告警)、平台级联、AI智能分析接入等视频能力…...
【性能优化】Android冷启动优化
文章目录 常见现象APP的启动流程计算启动时间Displayed Timeadb dump 启动优化具体策略总结参考链接 常见现象 各种第三方工具初始化和大量业务逻辑初始化,影响启动时间,导致应用启动延迟、卡顿等现象 APP的启动流程 加载和启动应用程序; …...
Git拉完整代码缺少某个类
已找到具体问题,对比之后发现应该是拉去的文件名字字符太长导致! 使用 Git LFS Git LFS(Large File Storage)是 Git 的一个扩展,它可以帮助管理大型文件,包括长文件名。如果你的项目包含大量的大型文件或长…...
Windows资源管理器down了,怎么解
ctrlshiftesc 打开任务管理器 文件 运行新任务 输入 Explorer.exe 资源管理器重启 问题解决 桌面也回来了...
锐捷统一上网行为管理与审计系统 static_convert.php 前台RCE漏洞复现
0x01 产品简介 锐捷统一上网行为管理与审计RG-UAC系列是星网锐捷网络有限公司自主研发的上网行为管理与审计产品,具备的上网行为日志审计功能,能够全面、准确、细致的审计并记录多种上网行为日志,包括网页、搜索、外发文件、邮件、论坛、IM等等,并对日志数据进行统计分析,…...
在Linux/Ubuntu/Debian中使用SSH连接远程服务器VPS
在Linux/Ubuntu/Debian中使用SSH连接远程服务器VPS 在远程管理服务器时,SSH(Secure Shell)协议是我们常用的工具之一。它提供了一种加密的方式来访问和管理远程主机。默认情况下,SSH使用22端口,但有时我们需要通过指定…...
如何安全进行亚马逊、沃尔玛测评?
在亚马逊、沃尔玛、速卖通、阿里国际站等电商平台上,测评已成为一种高效的推广手段,但伴随的风险也不容忽视。这些风险主要源于平台严格的大数据风控机制,它涵盖了多个方面,以确保评价的真实性和合规性。 首先,硬件参数…...
自动化喷涂生产线控制方法概述
喷涂生产线涉及控制机械臂及传送带等,以及触摸屏人机界面,以及各种电机,电磁阀等,本文针对具体控制方法进行讨论。 一套自动化喷涂生产线装配完成后,进入到控制调试阶段,首先要进行工艺参数的设置ÿ…...
【Linux】Centos升级到国产操作系统Openeuler
一、前言 迁移工具采用Openeuler官网提供的x2openEuler工具,是一款将源操作系统迁移到目标操作系统的迁移工具套件,具有批量化原地升级能力,当前支持将源 OS 升级至 openEuler 20.03。 官网链接:openEuler迁移专区 | 迁移专区首页…...
【扫雷游戏】C语言详解
Hi~!这里是奋斗的小羊,很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~~ 💥💥个人主页:奋斗的小羊 💥💥所属专栏:C语言 🚀本系列文章为个人学习…...
自定义平台后台登录地址前缀的教程
修改平台后台地址默认的 admin 前缀 修改后端 config/admin.php 配置文件,为自定义的后缀修改 平台后台前端源码中 src/settings.js 文件,修改为和上面一样的配置修改后重新打包前端代码,并且覆盖到后端的 public 目录下重启 swoole 服务即可...
kylin v10 离线安装chrome centos离线安装chrome linux离线安装谷歌浏览器
1. 先用自己联网的计算机,下载离线安装包,浏览器输入链接下载安装包: https://dl.google.com/linux/direct/google-chrome-stable_current_x86_64.rpm 1.2. 信创环境不用执行下面,因为没网 1.3. 若为阿里云服务器,或服…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
MySQL账号权限管理指南:安全创建账户与精细授权技巧
在MySQL数据库管理中,合理创建用户账号并分配精确权限是保障数据安全的核心环节。直接使用root账号进行所有操作不仅危险且难以审计操作行为。今天我们来全面解析MySQL账号创建与权限分配的专业方法。 一、为何需要创建独立账号? 最小权限原则…...
【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
CVE-2023-25194源码分析与漏洞复现(Kafka JNDI注入)
漏洞概述 漏洞名称:Apache Kafka Connect JNDI注入导致的远程代码执行漏洞 CVE编号:CVE-2023-25194 CVSS评分:8.8 影响版本:Apache Kafka 2.3.0 - 3.3.2 修复版本:≥ 3.4.0 漏洞类型:反序列化导致的远程代…...
