Day13—大语言模型
定义
大语言模型(Large Language Models)是一种基于深度学习的自然语言处理(NLP)模型,用于处理和生成人类语言文本。
一、认识NLP

什么是NLP
NLP(Natural Language Processing),即“自然语言处理”,主要研究使用计算机来处理、理解及运用人类语言的各种理论和方法,属于人工智能的一个重要研究方向。
简单来说,NLP就是如何让计算机理解人类语言。
NLP的主要研究方向
NLP是一个庞大的技术体系,研究方向主要包括机器翻译、信息检索、文档分类、问答系统、自动摘要、文本挖掘、知识图谱、语音识别、语音合成等。
相较于CNN重点应用于计算机视觉领域,RNN则更多地应用于NLP方向。
word2vec
word2vec介绍
word2vec是一种基于神经网络的词嵌入技术,通过训练神经网络得到一个关于输入X和输出Y之间的语言模型,获取训练好的神经网络权重,这个权重是用来对输入词汇X进行向量化表示的。
word2vec的两种模型
- CBOW模型
CBOW(Continuous Bag-of-Words Model),即“连续词袋模型”,其应用场景是根据上下文预测中间词,输入X是每个词汇的one-hot向量,输出Y为给定词汇表中每个词作为目标词的概率。

Skip-gram模型
也称为"跳字模型",应用场景是根据中间词预测上下文词,所以输入X为任意单词,输出Y为给定词汇表中每个词作为上下文词的概率。

二、全连接神经网络

全连接神经网络
全连接神经网络是一种连接方式较为简单的人工神经网络结构,某一层的任意一个节点,都和上一层所有节点相连接。

神经网络的激活函数

在神经网络中可以引入非线性激活函数,这样就可以使得神经网络可以对数据进行非线性变换,解决线性模型的表达能力不足的问题。
常见的激活函数
- Sigmoid激活函数
y = 1 1 + e − x \Large y=\frac{1}{1+e^{-x}} y=1+e−x1
- Relu激活函数
y = m a x ( 0 , x ) \Large y=max(0,x) y=max(0,x)
- tanh激活函数
y = e x − e − x e x + e − x = 1 − e − 2 x 1 + e − 2 x \Large y=\frac{e^x-e^{-x}}{e^x+e^{-x}}=\frac{1-e^{-2x}}{1+e^{-2x}} y=ex+e−xex−e−x=1+e−2x1−e−2x
- Softmax激活函数
p l = e z l ∑ j = 1 k e z j \Large p_l=\frac{e^{z_l}}{\sum_{j=1}^ke^{z_j}} pl=∑j=1kezjezl
Softmax激活函数计算的结果是各个分类的预测概率值,常用于多分类问题
神经网络的过拟合问题

神经网络因为隐藏层的存在可以实现复杂的非线性拟合功能。但随着神经网络层数加深,神经网络很容易发生过拟合现象(在训练集上表现很好,在未知的测试集上表现很差,即“泛化能力差”)。
解决神经网络过拟合问题的方法
- 正则化
与很多机器学习算法一样,可以在待优化的目标函数上添加正则化项(例如L1、L2正则),可以在一定程度减少过拟合的程度。
- Dropout(随机失活)
可以将Dropout理解为对神经网络中的每一个神经元加上一道概率流程,使得在神经网络训练时能够随机使某个神经元失效。

**注意: **
- 对于不同神经元个数的神经网络层,可以设置不同的失活或保留概率
- 如果担心某些层所含神经元较多或比其他层更容易发生过拟合,则可以将该层的失活概率设置得更高一些
感知器工作机制
感知器即单层神经网络,也即"人工神经元",是组成神经网络的最小单
前向传播与反向传播
前向传播
计算输出值的过程称为“前向传播”:将上一层的输出作为下一层的输入,并计算下一层的输出,一直到运算到输出层为止。
反向传播(Back Propagation,BP)
反向传播(BP)说白了根据根据J的公式对W和b求偏导,也就是求梯度。因为我们需要用梯度下降法来对参数进行更新,而更新就需要梯度。

总结:
前向传播得到输出,反向传播调整参数,最后以得到损失函数最小时的参数为最优学习参数。
相关文章:
Day13—大语言模型
定义 大语言模型(Large Language Models)是一种基于深度学习的自然语言处理(NLP)模型,用于处理和生成人类语言文本。 一、认识NLP 什么是NLP NLP(Natural Language Processing)࿰…...
php基础语法_面向对象
PHP php代码标记 多种标记来区分php脚本 ASP标记:<% php代码 %> 短标记: 脚本标记: 标准标记(常用): 简写风格: ASP风格:<% php代码 %> 注意:简写风格和ASP风格…...
开源模型应用落地-LangChain高阶-LCEL-表达式语言(八)
一、前言 尽管现在的大语言模型已经非常强大,可以解决许多问题,但在处理复杂情况时,仍然需要进行多个步骤或整合不同的流程才能达到最终的目标。然而,现在可以利用langchain来使得模型的应用变得更加直接和简单。 LCEL是什么? LCEL是一种非常灵活和强大的语言,可以帮助您更…...
c# 协议数据计算陀螺仪的角度,带符号
subStrL str.Substring((76 - 8), 2); subStrH str.Substring((78 - 8), 2); Data[7] (short)(Convert.ToInt16(subStrH, 16) * 256 Convert.ToInt16(subStrL, 16));//角度X subStrL str.Substring((80 - 8), 2); subStrH str.Subst…...
ArcGIS arcpy代码工具——批量要素裁剪栅格影像
系列文章目录 ArcGIS arcpy代码工具——批量对MXD文件的页面布局设置修改 ArcGIS arcpy代码工具——数据驱动工具批量导出MXD文档并同步导出图片 ArcGIS arcpy代码工具——将要素属性表字段及要素截图插入word模板 ArcGIS arcpy代码工具——定制属性表字段输出表格 ArcGIS arc…...
discuz插件之优雅草超级列表互动增强v1.2版本更新
https://doc.youyacao.com/9/2142 v1.2更新 discuz插件之优雅草超级列表互动增强v1.2版本更新 [title]20220617 v1.2发布[/title] 增加了对php8的支持 增加了 对discuz3.5的支持...
三、用户中心项目笔记----后端多环境实战+原始部署
后端多环境主要是修改: 依赖的环境地址 数据库地址 缓存地址 消息队列地址 项目端口号 服务器配置 后端怎么去区分不同的环境? 我们后端的SpringBoot项目,通过application.yml添加不同后缀来区分配置文件 application.yml就是公共的配置&a…...
SpringMVC的使用
SpringMVC详情 RequestMapping("/hello") 负责用户的请求路径与后台服务器之间的映射关系 如果请求路径不匹配,则用户报错404 ResponseBody 作用: 将服务器的返回值转化为JSON. 如果服务器返回的是String类型,则按照自身返回. 新增: post请求类型 PostMapping("…...
Vue73-命名路由
一、路由的name属性 二、小结...
TrustOne发布一周年成绩单,15000家数智化转型客户的选择!
新一代终端安全TrustOne 发布一周年 交出亮眼成绩单 目前已经为 15000家数智化转型客户 带来高效、全方位的解决方案 TrustOne 新一代终端安全 2023年6月 新一代终端安全TrustOne正式发布,极简新主义的创新理念为数字变革而来; 2023年12月 IDC&…...
Nginx实战:故障处理_后端服务正常,nginx偶发502(Bad Gateway)
一、故障场景 用户访问服务偶发报错【502 Bad Gateway】,但是服务后端正常运行。架构如下: #mermaid-svg-4dDszusKEuPgIPlt {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-4dDszusKEuPgIPlt .error-icon{fill:#5…...
mac系统清理软件哪个好用?CleanMyMac X清理工具轻松拿捏mac
还在为 mac 电脑里的垃圾文件、无用缓存和隐私痕迹而烦恼?想找一个软件直接全面清理优化电脑?维护苹果设备的清洁和高效运行是非常重要的,特别是在设备经过长时间使用后。有效的苹果清理软件不仅可以帮助您节省时间,还能延长设备的…...
拔掉独显提升性能,AMD新一代核显可以通杀主流游戏了
在今年台北电脑展上,AMD 除了带来了全新的 Ryzen 9000 系列。 与此同时也带来了全新的移动端处理器 Ryzen AI 9 HX 300 系列。 来源:AMD 也许是在 AI 领域稍晚一步,AMD 的全新移动端处理器命名直接把 AI 焊在脸上。 也就是咱们今天的主角 R…...
关于单片机那些事?
周期 时钟周期:也叫振荡周期,就是单片机外接晶振的倒数,如12Mhz,周期就是1/12us,最小的时间单位。频率越高,速度越快 指令周期:执行一条指令需要的时间,一般由若干个机器周期组成 …...
第5章 传输层
王道学习 考纲内容 (一)传输层提供的服务 传输层的功能:传输层寻址与端口;无连接服务和面向连接服务 (二)UDP UDP数据报;UDP检验 (三)TCP …...
典型传感器简介及驱动安装
双目视觉传感器 Indemind 传感器简介 INDEMIND M1 是专为开发者提供的一款硬件,采用“双目摄像头IMU”多传感器融合架构与 微秒级时间同步机制,为视觉 SLAM 研究提供精准稳定数据源,以满足 SLAM 研究、导航及 避障开发、视觉动作捕捉开发、…...
linux和Win——显卡驱动、Anaconda及pytorch安装(无需单独安装cuda、cudnn)
今天给新电脑的双系统(windows11和ubuntu22.04)安装了深度学习环境,在此记录一下。 一、Linux系统 (一)安装显卡驱动 (1)在安装Nvidia显卡驱动前,一定要点一下下面的“软件更新器…...
机器学习之多模态学习FLAVA(Foundational Language and Vision Alignment)
FLAVA(Foundational Language and Vision Alignment)是Meta AI提出的一种多模态学习模型,旨在处理自然语言和视觉任务。FLAVA通过联合学习文本和图像的特征表示,实现了在多模态任务上的优异性能。 FLAVA的基本概念 多模态学习: 多模态学习涉及同时处理多种类型的数据,例…...
Maven高级-证书校验
文章目录 SSL忽略配置IDEA里配置SSL忽略补充场景 SSL忽略配置 mvn -X clean install -Dmaven.resolver.transportwagon -Dmaven.wagon.http.ssl.insecuretrue -Dmaven.wagon.http.ssl.allowalltrue -Dmaven.wagon.http.ssl.ignore.validity.datestrueIDEA里配置SSL忽略 两个地…...
flutter是app跨平台最优解吗?
哈喽,我是老刘 最近在知乎上看到这样一个问题 我们先来解释一下问题中碰到的几个现象的可能原因,然后聊聊跨平台的最优解问题 问题解释 1、跟手、丝滑问题 这个问题其实很多人是有误解的,觉得原生的就丝滑跟手 其实不是这样的 我在做Flut…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例
文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...
蓝桥杯 冶炼金属
原题目链接 🔧 冶炼金属转换率推测题解 📜 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V,是一个正整数,表示每 V V V 个普通金属 O O O 可以冶炼出 …...
【Redis】笔记|第8节|大厂高并发缓存架构实战与优化
缓存架构 代码结构 代码详情 功能点: 多级缓存,先查本地缓存,再查Redis,最后才查数据库热点数据重建逻辑使用分布式锁,二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...
uniapp手机号一键登录保姆级教程(包含前端和后端)
目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
day36-多路IO复用
一、基本概念 (服务器多客户端模型) 定义:单线程或单进程同时监测若干个文件描述符是否可以执行IO操作的能力 作用:应用程序通常需要处理来自多条事件流中的事件,比如我现在用的电脑,需要同时处理键盘鼠标…...
