R语言——数据与运算
- 练习基本运算:
v <- c(2,4,6,9)
t <- c(1,4,7,9)
print(v>t)
print(v < t)
print(v == t)
print(v!=t)
print(v>=t)
print(v<=t)
v <- c(3,1,TRUE,2+3i)
t <- c(4,1,FALSE,2+3i)
print(v&t)
print(v|t)
print(!v)
v <- c(3,0,TRUE,2+2i)
t <- c(1,3,TRUE,2+3i)
print(v&&t)
v <- c(0,0,TRUE,2+2i)
t <- c(0,3,TRUE,2+3i)
print(v||t)
v <- c(0,0,TRUE,2+2i)
t <- c(0,3,TRUE,2+3i)
print(v||t)
- 使用转义符,用cat ()在控制台中打印出下列格式的输出
To have a \ you need \\
This is a really
really really
long string
- 创建一个对象,并进行数据类型的转换、判别操作,步骤如下:
- 创建一个对象x,内含元素为序列:1,3,5,6,8
- 判断对象x是否为数值型数据
- 将对象转换为逻辑型数据,记为x1。将对象转换为字符型数据,记为x2
- 判断x1是否为逻辑型数据.
- 分别输出as.character(c(T,0,FALSE))和as.character(c(T,“TRUR”,FALSE))的值,并描述两个值出现区别的原因.
- 构建一个数据框:
(1)将下列表格中的数据用数据框表述出来,命名为staff_table
| 序号 | name | ID | age |
| 1 | jack | 001 | 12 |
| 2 | rose | 002 | 13 |
| 3 | jane | 003 | 14 |
| 4 | james | 006 | NA |
(2)提取staff_table的员工rose的数据
(3)提取rose、jane的ID、age数据
(4)运用数据框提取员工的年龄数据,计算均值
- 练习基本运算:
代码:
v<-c(2,4,6,9)
t<-c(1,4,7,9)
print(v>t)
print(v<t)
print(v==t)
print(v!=t)
print(v>=t)
print(v<=t)v<-c(3,1,TRUE,2+3i)
t<-c(4,1,FALSE,2+3i)
print(v&t)
print(v|t)
print(!v)v<-c(3,0,TRUE,2+2i)
t<-c(1,3,TRUE,2+3i)
print(v[1]&&t[1])v<-c(0,0,TRUE,2+2i)
t<-c(0,3,TRUE,2+3i)
print(v[1]||t[1])v<-c(0,0,TRUE,2+2i)
t<-c(0,3,TRUE,2+3i)
print(v[2]||t[2])
结果:

- 使用转义符,用cat ()在控制台中打印出下列格式的输出
代码:
cat("To have a \\ you need \\\\\n")
cat("This is a really\nreally really")
截图:

- 创建一个对象,并进行数据类型的转换、判别操作,步骤如下:
- 创建一个对象x,内含元素为序列:1,3,5,6,8
代码:
x <- c(1, 3, 5, 6, 8)
截图:

- 判断对象x是否为数值型数据
代码:
is_numeric <- is.numeric(x)cat("x 是数值型数据吗?", is_numeric, "\n")
截图:

- 将对象转换为逻辑型数据,记为x1。将对象转换为字符型数据,记为x2
代码:
# 将对象转换为逻辑型数据,记为 x1
x1 <- as.logical(x)# 将对象转换为字符型数据,记为 x2
x2 <- as.character(x)
截图:

- 判断x1是否为逻辑型数据
代码:
# 判断 x1 是否为逻辑型数据is_logical <- is.logical(x1)cat("x1 是否为逻辑型数据?", is_logical, "\n")
截图:

- 分别输出as.character(c(T,0,FALSE))和as.character(c(T,“TRUR”,FALSE))的值,并描述两个值出现区别的原因.
代码:
# 输出 as.character(c(T, 0, FALSE)) 的值cat("as.character(c(T, 0, FALSE)) 的值:", as.character(c(T, 0, FALSE)), "\n")# 输出 as.character(c(T, "TRUR", FALSE)) 的值cat("as.character(c(T, \"TRUR\", FALSE)) 的值:", as.character(c(T, "TRUR", FALSE)), "\n")
截图:

原因:
as.character(c(T, 0, FALSE)) 的值为 “TRUE” “0” “FALSE”,而 as.character(c(T, "TRUR", FALSE)) 的值为 “TRUE” “TRUR” “FALSE”。这里的区别在于第二个向量中包含了一个字符型元素 “TRUR”,而不是整数型元素。
在 R 语言中,逻辑值 TRUE 和 FALSE 会被转换为字符型 “TRUE” 和 “FALSE”,而数字 0 会被解释为逻辑值 FALSE,最终被转换为字符型 “FALSE”。因此,在第一个向量中整数型的 0 被转换为字符型 “0”,而在第二个向量中字符型的 “TRUR” 保持不变。
- 构建一个数据框:
(1)将下列表格中的数据用数据框表述出来,命名为staff_table
| 序号 | name | ID | age |
| 1 | jack | 001 | 12 |
| 2 | rose | 002 | 13 |
| 3 | jane | 003 | 14 |
| 4 | james | 006 | NA |
代码:
# 创建数据框staff_table <- data.frame(序号 = c(1, 2, 3, 4),name = c("jack", "rose", "jane", "james"),ID = c("001", "002", "003", "006"),age = c(12, 13, 14, NA))# 显示数据框print(staff_table)
截图:

(2)提取staff_table的员工rose的数据
代码:
# 提取员工"rose"的数据rose_data <- staff_table[staff_table$name == "rose", ]# 显示提取的数据print(rose_data)
截图:

(3)提取rose、jane的ID、age数据
代码:
# 提取rose、jane的ID、age数据rose_jane_data <- staff_table[staff_table$name %in% c("rose", "jane"), c("name", "ID", "age")]# 显示提取的数据print(rose_jane_data)
截图:

(4)运用数据框提取员工的年龄数据,计算均值
代码:
# 提取员工的年龄数据age_data <- staff_table$age# 计算均值mean_age <- mean(age_data, na.rm = TRUE)# 显示均值print(mean_age)
截图:

相关文章:
R语言——数据与运算
练习基本运算: v <- c(2,4,6,9)t <- c(1,4,7,9)print(v>t)print(v < t)print(v t)print(v!t)print(v>t)print(v<t) v <- c(3,1,TRUE,23i)t <- c(4,1,FALSE,23i)print(v&t)print(v|t)print(!v)v <- c(3,0,TRUE,22i)t <- c(1,3,T…...
非强化学习的对齐方法
在文章《LLM对齐“3H原则”》和《深入理解RLHF技术》中,我们介绍了大语言模型与人类对齐的“3H原则”,以及基于人类反馈的强化学习方法(RLHF),本文将继续介绍另外一种非强化学习的对齐方法:直接偏好优化&am…...
写一个坏越的个人天地(三)
昨天卡巴卡巴还是投出了学习代码以来的第一份简历,遇到好的岗位还是想争取下的吧,虽然我觉得大概率还是gg了。 昨天完成了首页的上半部分 下半部分我的构思是左右栏,左侧为菜单栏,右侧为业务栏,左侧调整右侧router进行切换内容 可以用来展示js css的小demo 稍微调整下ro…...
【学习笔记】CSS
CSS 1、 基础篇 1.1、选择器 1.2、长度单位 1.3、CSS2 常用属性 1.4、盒模型 1.5、浮动 1.6、定位 position2、 CSS3 2.1、新增长度单位 2.2、新增颜色表示 2.3、新增选择器 2.4、新增盒子属性 2.5、新增背景属性 …...
与亚马逊云科技深度合作,再获WAPP、ISV认证
上半年,VERYCLOUD睿鸿股份加入亚马逊云科技的WAPP(Well-Architected Partner Programs)和ISV加速计划(ISV Accelerate Program),为客户带来更坚实优质的海外云服务。 Well-Architected 获得WAPP这项认证代表…...
idea 如何查看项目启动的端口号
方式一:查看Run/Debug Configurations: 打开IntelliJ IDEA,点击菜单栏的Run,然后选择Edit Configurations...,或者直接使用快捷键(通常是Shift Alt F10然后选择Edit Configurations)。 在打开的Run/Debug…...
年薪超过30万的网工,需要具备什么技能?
网工是一个各行各业都需要的职业,工作内容属性决定了它不会只在某一方面专精,需要掌握网络维护、设计、部署、运维、网络安全等技能。 那么,网络工程师的技术水平体现在哪些方面?今天就跟你唠唠这个。 01 先来测测你的网络设计能力…...
【杂记-浅谈OSPF协议中的邻居关系与邻接关系】
OSPF协议中的邻居关系与邻接关系 1、邻居关系2、邻接关系3、DR-other之间的邻居关系 在OSPF协议中,Neighbor relationship 邻居关系和Adjacency 邻接关系是两个核心概念,它们在路由器之间建立正确的路由信息传递机制方面起着关键作用。 1、邻居关系 邻…...
白银价格行情分析兼顾基本面和技术面
许多投资者在进行白银交易时都非常喜欢看技术指标和技术分析。他们浏览不同的网站,看各种各样的白银行情分析信息。网上的白银分析信息网站非常的多,讲解白银交易技巧的书籍也数不胜数,有翻译国外的,也有国人自己编写的。有的讲的…...
搜维尔科技推出绿幕抠屏虚拟制作演示项目
搜维尔科技推出绿幕抠屏虚拟制作演示项目 搜维尔科技推出绿幕抠屏虚拟制作演示项目...
大数据集群搭建基础:Linux下MySQL安装!!!
基于提供的MySQL安装包的安装步骤 前提:MariaDB已卸载 yum remove mariadb-libs安装mysql-community-common包 这个包含有MySQL社区版的公共文件和脚本,是安装其他组件的基础。 sudo rpm -ivh mysql-community-common-5.7.16-1.el7.x86_64.rpm安装m…...
FLASH闪存
FLASH闪存 程序现象: 1、读写内部FLASH 这个代码的目的,就是利用内部flash程序存储器的剩余空间,来存储一些掉电不丢失的参数。所以这里的程序是按下K1变换一下测试数据,然后存储到内部FLASH,按下K2把所有参数清0&…...
GPT-5智能新纪元的曙光
在美国达特茅斯工程学院周四公布的采访中,OpenAI首席技术官米拉穆拉蒂被问及GPT-5是否会在明年发布,给出了肯定答案并表示将在一年半后发布。穆拉蒂在采访中还把GPT-4到GPT-5的飞跃描述为高中生到博士生的成长。 这一爆炸性的消息,震动了整体…...
Qt | QPalette 类(调色版)
01、简介 1、需要用到 QWidget类中的如下属性 palette:QPalette 访问函数:const QPalette &palette() const; void setPalette(const QPalette&); 该属性描述了部件的调色板。在渲染标准部件时,窗口部件的样式会使用调色板,而且不同的平台或不同的样式通常具…...
Linux操作系统进程同步的几种方式及基本原理
1,进程同步的几种方式 1.1信号量 用于进程间传递信号的一个整数值。在信号量上只有三种操作可以进行:初始化,P操作和V操作,这三种操作都是原子操作。 P操作(递减操作)可以用于阻塞一个进程,V操作(增加操作)可以用于…...
android 责任链模式
责任链模式(Chain of Responsibility Pattern)是一种行为设计模式,它允许多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合。这种模式将这些对象连成一条链,并沿着这条链传递请求,直到有一…...
【可控图像生成系列论文(四)】IP-Adapter 具体是如何训练的?1公式篇
系列文章目录 【可控图像生成系列论文(一)】 简要介绍了 MimicBrush 的整体流程和方法;【可控图像生成系列论文(二)】 就MimicBrush 的具体模型结构、训练数据和纹理迁移进行了更详细的介绍。【可控图像生成系列论文&…...
堆的实现详解
目录 1. 堆的概念和特点2. 堆的实现2.1 堆向下调整算法2.2堆的创建2.3 建堆时间复杂度2.4 堆的插入2.5 堆的删除2.6 堆的代码实现2.6.1 结构体2.6.2 初始化2.6.3 销毁2.6.4 插入2.6.5 删除2.6.6 获取堆顶2.6.7 判空2.6.8 个数2.6.9 向上调整2.6.10 向下调整3. 堆的实现测试测试…...
iptables配置NAT实现端口转发
加载防火墙的内核模块 modprobe ip_tables modprobe ip_nat_ftp modprobe ip_conntrack 1.开启路由转发功能 echo net.ipv4.ip_forward 1 >> /etc/sysctl.conf sysctl -p2、将本地的端口转发到本机端口 将本机的 7777 端口转发到 6666 端口。 iptables -t nat -A PR…...
【启明智显产品介绍】Model3C工业级HMI芯片详解专题(一)芯片性能
【启明智显产品介绍】工业级HMI芯片Model3C详解(一)芯片性能 Model3C 是一款基于 RISC-V 的高性能、国产自主、工业级高清显示与智能控制 MCU,配置平头哥E907,主频400MHz,强大的 2D 图形加速处理器、PNG/JPEG 解码引擎…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...
k8s从入门到放弃之Pod的容器探针检测
k8s从入门到放弃之Pod的容器探针检测 在Kubernetes(简称K8s)中,容器探测是指kubelet对容器执行定期诊断的过程,以确保容器中的应用程序处于预期的状态。这些探测是保障应用健康和高可用性的重要机制。Kubernetes提供了两种种类型…...
以太网PHY布局布线指南
1. 简介 对于以太网布局布线遵循以下准则很重要,因为这将有助于减少信号发射,最大程度地减少噪声,确保器件作用,最大程度地减少泄漏并提高信号质量。 2. PHY设计准则 2.1 DRC错误检查 首先检查DRC规则是否设置正确,然…...
