MAB规范(3):Chapter6 Glossary 术语表
第6章 - 术语表
此章不做过多的批注,都是些简单的术语解释。



相关文章:
MAB规范(3):Chapter6 Glossary 术语表
第6章 - 术语表 此章不做过多的批注,都是些简单的术语解释。...
40python数据分析numpy基础之diag处理矩阵对角线元素
1 python数据分析numpy基础之diag处理矩阵对角线元素 python的numpy库的diag(v,k0)函数,以一维数组的形式返回方阵的对角线元素,或将一维数组转换为方阵(非对角线元素为0)。 方阵:方形矩阵,行数和列数相等…...
ffmpeg+nginx+video实现rtsp流转hls流,web页面播放
项目场景: 最近调试海康摄像头需要将rtsp流在html页面播放,因为不想去折腾推拉流,所以我选择ffmpeg转hls流,nginx转发,html直接访问就好了 1.首先要下载nginx和ffmpeg 附上下载地址: nginx nginx news ffmpeg htt…...
1、Redis系列-Redis高性能原理详解
Redis高性能原理详解 Redis是一款高性能的内存数据库,广泛应用于需要快速读写访问的数据密集型应用中。它的高性能得益于多方面的设计和优化。以下是Redis高性能实现的详细解释: 1. 单线程架构 Redis采用单线程架构来处理客户端请求,这与传…...
18.枚举
学习知识:枚举类型、相关的使用方法 Main.java: public class Main {public static void main(String[] args) {myenum[] colorlist myenum.values();//获取枚举中所有对象的引用数组for (myenum one : colorlist){System.out.println(one.toString(…...
全省高等职业学校大数据技术专业建设暨专业质量监测研讨活动顺利开展
6月21日,省教育评估院在四川邮电职业技术学院组织开展全省高等职业学校大数据技术专业建设暨专业质量监测研讨活动。省教育评估院副院长赖长春,四川邮电职业技术学院党委副书记、校长冯远洪,四川邮电职业技术学院党委委员、副校长程德杰等出席…...
2-16 基于matlab的动载荷简支梁模态分析程序
基于matlab的动载荷简支梁模态分析程序,可调节简支梁参数,包括截面宽、截面高、梁长度、截面惯性矩、弹性模量、密度。输出前四阶固有频率,任意时刻、位置的响应结果。程序已调通,可直接运行。 2-16 matlab 动载荷简支梁模态分析 …...
AI大模型的核心
前言 没错,AI大模型的核心成功因素通常可以归结为三大要素:大数据、大算力和强算法。这三个因素相辅相成,共同推动了现代人工智能技术的发展。 1. 大数据 • 定义:指的是涵盖广泛领域的海量数据,包括文本、图像、音…...
【Android面试八股文】ViewHolder为什么要被声明成静态内部类?
文章目录 ViewHolder为什么要被声明成静态内部类?1. 避免隐式引用导致的内存泄漏2. 提高性能3. 代码可读性和维护性实例代码总结ViewHolder为什么要被声明成静态内部类? 将 ViewHolder 声明为静态内部类有几个重要的原因,这样做可以提高性能并避免潜在的内存泄漏。下面是详…...
Android 11 系统OTA升级到旧版本(去除升级时间戳校验)
简介 由于客户要求能够通过OTA升级到旧版本因此探寻反向升级的方法。 方法一:进入recover模式 adb reboot recovery 点击Apply update from SD card 然后选择以前的OTA升级包就可以了。这种方式实测可以升级到旧的版本。但是我们的客户是通过在线升级软件进行更新…...
更新表的统计信息并清空缓存--DM8达梦数据库
更新表的统计信息并清空缓存--DM8达梦数据库 环境介绍1 收集 <表> 上所有对象信息,含索引2 清理缓存的执行计划3 达梦数据库学习使用列表 环境介绍 在某些环境刚完成数据迁移, 10万行以上大表数据量有修改1/3 ,查询条件已经创建索引,执行计划不好,或执行计划…...
【前后端实现】AHP权重计算
AHP权重计算: 需求:前端记录矩阵维度、上三角值,后端构建比较矩阵、计算权重值并将结果返回给前端 比较矩阵构建 如果你想要根据上三角(不包括对角线)的值来构建对称矩阵,那么你可以稍作修改上述的generate…...
K8S日常运维手册
Kubernetes(简称 K8S)是一种广泛使用的容器编排平台,能够自动化部署、扩展和管理容器化应用。对于运维人员来说,掌握 Kubernetes 的日常运维技能是确保系统稳定运行的关键。本文将介绍一些 Kubernetes 日常运维的基本操作与技巧&a…...
现在的Java面试都这么扯淡了吗?
在开始前刚好我有一些资料,是我根据网友给的问题精心整理了一份「java的资料从专业入门到高级教程」, 点个关注在评论区回复“666”之后私信回复“666”,全部无偿共享给大家!!!开发兼过半年面试官 刚开始…...
安全加固 MariaDB 和 MySQL 数据库
安全加固 MariaDB 和 MySQL 数据库 在今天的网络环境中,保护数据库安全至关重要,特别是像 MariaDB 和 MySQL 这样的流行数据库。本文将介绍一些关键的安全加固步骤,以确保数据库系统的安全性和稳定性。 1. 数据库版本和基础设置 首先&…...
【计算机毕业设计】167校园失物招领微信小程序
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
yum的概念、相关命令、ftp http部署步骤;NFS共享文件操作步骤
目录 yum 配置文件 缓存功能操作步骤 创建并配置本地仓库文件 yum相关命令 yum install __ yum repolist yum list __ yum info __ yum search __ yum whatprovides __ yum remove __ yum -y update __ yum history yum grouplist yum groupinstall "__&q…...
Spire.PDF for .NET【文档操作】演示:如何删除 PDF 中的图层
借助Spire.PDF,我们可以在新建或现有pdf文档的任意页面中添加线条、图像、字符串、椭圆、矩形、饼图等多种图层。同时,它还支持我们从pdf文档中删除特定图层。 Spire.PDF for .NET 是一款独立 PDF 控件,用于 .NET 程序中创建、编辑和操作 PD…...
【c语言】二级指针
1,定义 本质还是从指针的角度去理解,只不过存的指针的值 2,使用方法...
心理健康测试系统设计
心理健康测试系统设计需要综合考虑多个方面,以确保系统的准确性、易用性和有效性。以下是一个心理健康测试系统设计方案: 一、设计目标 准确性:确保测试结果能够准确反映被测者的心理健康状况。 易用性:设计简洁明了的界面和操作…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?
Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案
目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...
