Matlab|【防骗帖】考虑时空相关性的风电功率预测误差建模与分析
目录
1 主要内容
2 部分程序
3 下载链接
1 主要内容
这个程序《考虑时空相关性的风电功率预测误差建模与分析》画的图片非常漂亮,和原文献基本一致,但是实际上内容并未实现出来,主要就是利用现有的风电预测的数据和结果做了相关的图,大家不要白花钱,今天把这个程序免费分享给大家,大家可以学习一下画图技巧以及数据分析方面的知识。
ps:原程序的95%置信区间是采用均值加减标准差是不对的,已经更正过来,应该增加1.96的系数,程序包附上了置信区间和均值标准差的关系说明。






2 部分程序
%% 清空环境变量
clc
clear all;
%% 提取数据
data=xlsread('实验数据.xlsx',1);
%% 提取对应各段中点位置处的误差值
error_fenbu_1=[];
for i=1:size(data,1)if data(i,3)>=220 && data(i,3)<=240error_fenbu_1(i)=data(i,8);elseerror_fenbu_1(i)=0;end
end
error_1=error_fenbu_1(find(error_fenbu_1~=0));
error_fenbu_2=[];
for i=1:size(data,1)if data(i,3)>=670&&data(i,3)<=690;error_fenbu_2(i)=data(i,8);else error_fenbu_2(i)=0;end
end
error_2=error_fenbu_2(find(error_fenbu_2~=0));
error_fenbu_3=[];
for i=1:size(data,1)if data(i,3)>=1128 && data(i,3)<=1148;error_fenbu_3(i)=data(i,8);else error_fenbu_3(i)=0;end
end
error_3=error_fenbu_3(find(error_fenbu_3~=0));
error_fenbu_4=[];
for i=1:size(data,1)if data(i,3)>=1585&&data(i,3)<=1605;error_fenbu_4(i)=data(i,8);else error_fenbu_4(i)=0;end
end
error_4=error_fenbu_4(find(error_fenbu_4~=0));
error_fenbu_5=[];
for i=1:size(data,1) if data(i,3)>=2040&&data(i,3)<=2060;error_fenbu_5(i)=data(i,8);else error_fenbu_5(i)=0;end
end
error_5=error_fenbu_5(find(error_fenbu_5~=0));
error_fenbu_6=[];
for i=1:size(data,1) if data(i,3)>=2495 && data(i,3)<=2515;error_fenbu_6(i)=data(i,8);else error_fenbu_6(i)=0;end
end
error_6=error_fenbu_6(find(error_fenbu_6~=0));
error_fenbu_7=[];
for i=1:size(data,1) if data(i,3)>=2950&&data(i,3)<=2970;error_fenbu_7(i)=data(i,8);else error_fenbu_7(i)=0;end
end
error_7=error_fenbu_7(find(error_fenbu_7~=0));
error_fenbu_8=[];
for i=1:size(data,1) if data(i,3)>=3406 && data(i,3)<=3426;error_fenbu_8(i)=data(i,8); else error_fenbu_8(i)=0;end
end
error_8=error_fenbu_8(find(error_fenbu_8~=0));
error_fenbu_9=[];
for i=1:size(data,1) if data(i,3)>=3860&&data(i,3)<=3880;error_fenbu_9(i)=data(i,8); else error_fenbu_9(i)=0;end
end
error_9=error_fenbu_9(find(error_fenbu_9~=0));
error_fenbu_10=[];
for i=1:size(data,1) if data(i,3)>=4317&&data(i,3)<=4337;error_fenbu_10(i)=data(i,8); else error_fenbu_10(i)=0;end
end
error_10=error_fenbu_10(find(error_fenbu_10~=0));
%% 拟合分布—求取t分布参数进行拟合
error_values=-3000:0.5:3000;
pd_1= fitdist(error_1','tLocationScale');
desity_1= pdf(pd_1,error_values);
pd_2= fitdist(error_2','tLocationScale');
desity_2= pdf(pd_2,error_values);
pd_3= fitdist(error_3','tLocationScale');
desity_3= pdf(pd_3,error_values);
pd_4= fitdist(error_4','tLocationScale');
desity_4= pdf(pd_4,error_values);
pd_5= fitdist(error_5','tLocationScale');
3 下载链接
相关文章:
Matlab|【防骗帖】考虑时空相关性的风电功率预测误差建模与分析
目录 1 主要内容 2 部分程序 3 下载链接 1 主要内容 这个程序《考虑时空相关性的风电功率预测误差建模与分析》画的图片非常漂亮,和原文献基本一致,但是实际上内容并未实现出来,主要就是利用现有的风电预测的数据和结果做了相关的图&#…...
【Android面试八股文】说一说ListView卡顿的原因以及相对应的优化策略
文章目录 一、ListView卡顿的原因1.1 Item没有复用1.2 布局的层级过深1.3 数据绑定逻辑过多1.4 滑动时不必要的图片刷新1.5 频繁的notifyDataSetChanged二、优化策略2.1 使用 ViewHolder 进行视图复用2.2 优化布局结构2.3 优化数据绑定逻辑过多2.4 图片加载优化2.5 避免频繁调用…...
Kotlin 中的内联函数
1 inline 内联函数:消除 Lambda 带来的运行时开销。 举例来说: fun main() {val num1 100val num2 80val result num1AndNum2(num1, num2) { n1, n2 ->n1 n2} }fun num1AndNum2(num1: Int, num2: Int, operation: (Int, Int) -> Int): Int …...
KALI LINUX 开启ssh免登录服务及固定ip及
SSH以进行远程登录 在Kali Linux中启用SSH以进行远程登录,请按照以下步骤操作: 安装SSH服务:sudo apt update sudo apt install openssh-server 已安装可忽略 sudo systemctl start ssh 启动SSH服务 sudo systemctl enable ssh 确保SSH服务设置为开机启动: (可选)如…...
亮数据,一款新的低代码爬虫利器!
在当今数据驱动型时代,数据采集和分析能力算是个人和企业的核心竞争力。然而,手动采集数据耗时费力且效率低下,而且容易被网站封禁。 我之前使用过一个爬虫工具,亮数据(Bright Data) ,是一款低…...
配置OSPF认证(华为)
#交换设备 配置OSPF认证-基于华为路由器 OSPF(开放最短路径优先)是一种内部网关协议(IGP),用于在单一自治系统(AS)内决策路由。OSPF认证功能是路由器中的一项安全措施,它的主要用途…...
关于ip地址的网页无法访问navigator的gpu、媒体、蓝牙等设备的解决方法
在使用threejs的WebGPURenderer渲染器时,发现localhost以及127.0.0.1才能访问到navigator.gpu,直接使用ip会变成undefined,原因是为了用户的隐私安全,只能在安全的上下文中使用,非安全的上下文就会是undefined,安全上下…...
深入理解外观模式(Facade Pattern)及其实际应用
引言 在软件开发中,复杂的系统往往由多个子系统组成,这些子系统之间的交互可能非常复杂。外观模式(Facade Pattern)通过为这些子系统提供一个统一的接口,简化了它们的交互。本篇文章将详细介绍外观模式的概念、应用场…...
为什么永远不会有语言取代 C/C++?
每个 CPU 都带有一种称为 ISA(指令集架构)汇编的电路语言。ISA 程序集是一种硬件语言,由基本数据操作、数学计算和结构化编程(即 jmp)的操作组成。但是,为每个计算需求编写汇编代码无疑是耗时的,…...
Python 全栈体系【四阶】(六十一)
第五章 深度学习 十三、自然语言处理(NLP) 5. NLP应用 5.2 文本情感分析 目标:利用训练数据集,对模型训练,从而实现对中文评论语句情感分析。情绪分为正面、负面两种 数据集:中文关于酒店的评论&#…...
工控必备C#
微软的C# 语言? QT 熟了以后,Qt 更方便些 方法Signal Slot 感觉上一样 现在更推荐PyQt 来构建,底层还是Qt C 的那些库,Qt 的开源协议有点狗...
【设计模式之基于特性的动态路由映射模式】
在ASP.NET Core中,路由是核心功能之一,用于将HTTP请求映射到相应的控制器操作。虽然“路由驱动设计模式”是一个我刚杜撰出来的设计模式名称,但我们可以基于ASP.NET Core的路由特性,构建一种以路由为中心的设计模式。 以下是一个…...
GB 16807-2009 防火膨胀密封件
防火膨胀密封件是指在火灾时遇火或高温作用能够膨胀,且能辅助建筑构配件使之具有隔火、隔烟、隔热等防火密封性能的产品。 GB 16807-2009 防火膨胀密封件测试项目 测试要求 测试标准 外观 GB 16807 尺寸允许偏差 GB 16807 膨胀性能 GB 16807 产烟毒性 GB …...
从零开始做题:老照片中的密码
老照片中的密码 1.题目 1.1 给出图片如下 1.2 给出如下提示 这张老照片中的人使用的是莫尔斯电报机,莫尔斯电报机分为莫尔斯人工电报机和莫尔斯自动电报机(简称莫尔斯快机)。莫尔斯人工电报机是一种最简单的电报机,由三个部分组…...
考研数学|张宇和武忠祥,强化能不能同时跟?
可以说你跟武老师学明白了,120完全没问题!如果追求更高,宇哥的怀抱也想你敞开! 学长我21年一战数学83,总分没过线,22年二战143,逆袭上岸211!市面上的老师我基本都听过,最…...
【机器学习】——【线性回归模型】——详细【学习路线】
目录 1. 引言 2. 线性回归理论基础 2.1 线性模型概述 2.2 最小二乘法 3. 数学基础 3.1 矩阵运算 3.2 微积分 3.3 统计学 4. 实现与应用 4.1 使用Scikit-learn实现线性回归 4.2 模型评估 5. 深入理解 5.1 多元线性回归 5.2 特征选择 5.3 理解模型内部 6. 实战与项…...
【mysql】常用操作:维护用户/开启远程/忘记密码/常用命令
一、维护用户 1.1 创建用户 -- 语法 > CREATE USER [username][host] IDENTIFIED BY [password];-- 例子: -- 添加用户user007,密码123456,并且只能在本地可以登录 > CREATE USER user007localhost IDENTIFIED BY 123456; -- 添加用户…...
引领AI新时代:深度学习与大模型的关键技术
文章目录 📑前言一、内容概述二、作者简介三、书籍特色四、学习平台与资源 📑前言 在数字化浪潮席卷全球的今天,人工智能(AI)和深度学习技术已经渗透到我们生活的方方面面。从智能手机中的智能语音助手,到…...
STL——常用算法(二)
一、常用拷贝和替换算法 1.copy #include <iostream> #include <vector> #include <algorithm> using namespace std; void printVector(int val) {cout << val << " "; } void test01() {vector<int>v1;for (int i 0; i <…...
MyCAT 2 底层原理
MyCAT 2 底层原理 1. MyCAT 2 架构概述 MyCAT 2 是一款开源的数据库中间件,它通过分库分表、读写分离、动态路由等机制提升数据库系统的性能和扩展性。MyCAT 2 的架构设计灵活,适用于多种数据库类型,包括 MySQL、PostgreSQL 和 SQL Server …...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...
【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
【C++】纯虚函数类外可以写实现吗?
1. 答案 先说答案,可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...
沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...
【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...
高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...
Java多线程实现之Runnable接口深度解析
Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...
