Matlab|【防骗帖】考虑时空相关性的风电功率预测误差建模与分析
目录
1 主要内容
2 部分程序
3 下载链接
1 主要内容
这个程序《考虑时空相关性的风电功率预测误差建模与分析》画的图片非常漂亮,和原文献基本一致,但是实际上内容并未实现出来,主要就是利用现有的风电预测的数据和结果做了相关的图,大家不要白花钱,今天把这个程序免费分享给大家,大家可以学习一下画图技巧以及数据分析方面的知识。
ps:原程序的95%置信区间是采用均值加减标准差是不对的,已经更正过来,应该增加1.96的系数,程序包附上了置信区间和均值标准差的关系说明。
2 部分程序
%% 清空环境变量 clc clear all; %% 提取数据 data=xlsread('实验数据.xlsx',1); %% 提取对应各段中点位置处的误差值 error_fenbu_1=[]; for i=1:size(data,1)if data(i,3)>=220 && data(i,3)<=240error_fenbu_1(i)=data(i,8);elseerror_fenbu_1(i)=0;end end error_1=error_fenbu_1(find(error_fenbu_1~=0)); error_fenbu_2=[]; for i=1:size(data,1)if data(i,3)>=670&&data(i,3)<=690;error_fenbu_2(i)=data(i,8);else error_fenbu_2(i)=0;end end error_2=error_fenbu_2(find(error_fenbu_2~=0)); error_fenbu_3=[]; for i=1:size(data,1)if data(i,3)>=1128 && data(i,3)<=1148;error_fenbu_3(i)=data(i,8);else error_fenbu_3(i)=0;end end error_3=error_fenbu_3(find(error_fenbu_3~=0)); error_fenbu_4=[]; for i=1:size(data,1)if data(i,3)>=1585&&data(i,3)<=1605;error_fenbu_4(i)=data(i,8);else error_fenbu_4(i)=0;end end error_4=error_fenbu_4(find(error_fenbu_4~=0)); error_fenbu_5=[]; for i=1:size(data,1) if data(i,3)>=2040&&data(i,3)<=2060;error_fenbu_5(i)=data(i,8);else error_fenbu_5(i)=0;end end error_5=error_fenbu_5(find(error_fenbu_5~=0)); error_fenbu_6=[]; for i=1:size(data,1) if data(i,3)>=2495 && data(i,3)<=2515;error_fenbu_6(i)=data(i,8);else error_fenbu_6(i)=0;end end error_6=error_fenbu_6(find(error_fenbu_6~=0)); error_fenbu_7=[]; for i=1:size(data,1) if data(i,3)>=2950&&data(i,3)<=2970;error_fenbu_7(i)=data(i,8);else error_fenbu_7(i)=0;end end error_7=error_fenbu_7(find(error_fenbu_7~=0)); error_fenbu_8=[]; for i=1:size(data,1) if data(i,3)>=3406 && data(i,3)<=3426;error_fenbu_8(i)=data(i,8); else error_fenbu_8(i)=0;end end error_8=error_fenbu_8(find(error_fenbu_8~=0)); error_fenbu_9=[]; for i=1:size(data,1) if data(i,3)>=3860&&data(i,3)<=3880;error_fenbu_9(i)=data(i,8); else error_fenbu_9(i)=0;end end error_9=error_fenbu_9(find(error_fenbu_9~=0)); error_fenbu_10=[]; for i=1:size(data,1) if data(i,3)>=4317&&data(i,3)<=4337;error_fenbu_10(i)=data(i,8); else error_fenbu_10(i)=0;end end error_10=error_fenbu_10(find(error_fenbu_10~=0)); %% 拟合分布—求取t分布参数进行拟合 error_values=-3000:0.5:3000; pd_1= fitdist(error_1','tLocationScale'); desity_1= pdf(pd_1,error_values); pd_2= fitdist(error_2','tLocationScale'); desity_2= pdf(pd_2,error_values); pd_3= fitdist(error_3','tLocationScale'); desity_3= pdf(pd_3,error_values); pd_4= fitdist(error_4','tLocationScale'); desity_4= pdf(pd_4,error_values); pd_5= fitdist(error_5','tLocationScale');
3 下载链接
相关文章:

Matlab|【防骗帖】考虑时空相关性的风电功率预测误差建模与分析
目录 1 主要内容 2 部分程序 3 下载链接 1 主要内容 这个程序《考虑时空相关性的风电功率预测误差建模与分析》画的图片非常漂亮,和原文献基本一致,但是实际上内容并未实现出来,主要就是利用现有的风电预测的数据和结果做了相关的图&#…...
【Android面试八股文】说一说ListView卡顿的原因以及相对应的优化策略
文章目录 一、ListView卡顿的原因1.1 Item没有复用1.2 布局的层级过深1.3 数据绑定逻辑过多1.4 滑动时不必要的图片刷新1.5 频繁的notifyDataSetChanged二、优化策略2.1 使用 ViewHolder 进行视图复用2.2 优化布局结构2.3 优化数据绑定逻辑过多2.4 图片加载优化2.5 避免频繁调用…...

Kotlin 中的内联函数
1 inline 内联函数:消除 Lambda 带来的运行时开销。 举例来说: fun main() {val num1 100val num2 80val result num1AndNum2(num1, num2) { n1, n2 ->n1 n2} }fun num1AndNum2(num1: Int, num2: Int, operation: (Int, Int) -> Int): Int …...
KALI LINUX 开启ssh免登录服务及固定ip及
SSH以进行远程登录 在Kali Linux中启用SSH以进行远程登录,请按照以下步骤操作: 安装SSH服务:sudo apt update sudo apt install openssh-server 已安装可忽略 sudo systemctl start ssh 启动SSH服务 sudo systemctl enable ssh 确保SSH服务设置为开机启动: (可选)如…...

亮数据,一款新的低代码爬虫利器!
在当今数据驱动型时代,数据采集和分析能力算是个人和企业的核心竞争力。然而,手动采集数据耗时费力且效率低下,而且容易被网站封禁。 我之前使用过一个爬虫工具,亮数据(Bright Data) ,是一款低…...

配置OSPF认证(华为)
#交换设备 配置OSPF认证-基于华为路由器 OSPF(开放最短路径优先)是一种内部网关协议(IGP),用于在单一自治系统(AS)内决策路由。OSPF认证功能是路由器中的一项安全措施,它的主要用途…...

关于ip地址的网页无法访问navigator的gpu、媒体、蓝牙等设备的解决方法
在使用threejs的WebGPURenderer渲染器时,发现localhost以及127.0.0.1才能访问到navigator.gpu,直接使用ip会变成undefined,原因是为了用户的隐私安全,只能在安全的上下文中使用,非安全的上下文就会是undefined,安全上下…...
深入理解外观模式(Facade Pattern)及其实际应用
引言 在软件开发中,复杂的系统往往由多个子系统组成,这些子系统之间的交互可能非常复杂。外观模式(Facade Pattern)通过为这些子系统提供一个统一的接口,简化了它们的交互。本篇文章将详细介绍外观模式的概念、应用场…...

为什么永远不会有语言取代 C/C++?
每个 CPU 都带有一种称为 ISA(指令集架构)汇编的电路语言。ISA 程序集是一种硬件语言,由基本数据操作、数学计算和结构化编程(即 jmp)的操作组成。但是,为每个计算需求编写汇编代码无疑是耗时的,…...

Python 全栈体系【四阶】(六十一)
第五章 深度学习 十三、自然语言处理(NLP) 5. NLP应用 5.2 文本情感分析 目标:利用训练数据集,对模型训练,从而实现对中文评论语句情感分析。情绪分为正面、负面两种 数据集:中文关于酒店的评论&#…...

工控必备C#
微软的C# 语言? QT 熟了以后,Qt 更方便些 方法Signal Slot 感觉上一样 现在更推荐PyQt 来构建,底层还是Qt C 的那些库,Qt 的开源协议有点狗...
【设计模式之基于特性的动态路由映射模式】
在ASP.NET Core中,路由是核心功能之一,用于将HTTP请求映射到相应的控制器操作。虽然“路由驱动设计模式”是一个我刚杜撰出来的设计模式名称,但我们可以基于ASP.NET Core的路由特性,构建一种以路由为中心的设计模式。 以下是一个…...
GB 16807-2009 防火膨胀密封件
防火膨胀密封件是指在火灾时遇火或高温作用能够膨胀,且能辅助建筑构配件使之具有隔火、隔烟、隔热等防火密封性能的产品。 GB 16807-2009 防火膨胀密封件测试项目 测试要求 测试标准 外观 GB 16807 尺寸允许偏差 GB 16807 膨胀性能 GB 16807 产烟毒性 GB …...

从零开始做题:老照片中的密码
老照片中的密码 1.题目 1.1 给出图片如下 1.2 给出如下提示 这张老照片中的人使用的是莫尔斯电报机,莫尔斯电报机分为莫尔斯人工电报机和莫尔斯自动电报机(简称莫尔斯快机)。莫尔斯人工电报机是一种最简单的电报机,由三个部分组…...

考研数学|张宇和武忠祥,强化能不能同时跟?
可以说你跟武老师学明白了,120完全没问题!如果追求更高,宇哥的怀抱也想你敞开! 学长我21年一战数学83,总分没过线,22年二战143,逆袭上岸211!市面上的老师我基本都听过,最…...

【机器学习】——【线性回归模型】——详细【学习路线】
目录 1. 引言 2. 线性回归理论基础 2.1 线性模型概述 2.2 最小二乘法 3. 数学基础 3.1 矩阵运算 3.2 微积分 3.3 统计学 4. 实现与应用 4.1 使用Scikit-learn实现线性回归 4.2 模型评估 5. 深入理解 5.1 多元线性回归 5.2 特征选择 5.3 理解模型内部 6. 实战与项…...

【mysql】常用操作:维护用户/开启远程/忘记密码/常用命令
一、维护用户 1.1 创建用户 -- 语法 > CREATE USER [username][host] IDENTIFIED BY [password];-- 例子: -- 添加用户user007,密码123456,并且只能在本地可以登录 > CREATE USER user007localhost IDENTIFIED BY 123456; -- 添加用户…...

引领AI新时代:深度学习与大模型的关键技术
文章目录 📑前言一、内容概述二、作者简介三、书籍特色四、学习平台与资源 📑前言 在数字化浪潮席卷全球的今天,人工智能(AI)和深度学习技术已经渗透到我们生活的方方面面。从智能手机中的智能语音助手,到…...

STL——常用算法(二)
一、常用拷贝和替换算法 1.copy #include <iostream> #include <vector> #include <algorithm> using namespace std; void printVector(int val) {cout << val << " "; } void test01() {vector<int>v1;for (int i 0; i <…...
MyCAT 2 底层原理
MyCAT 2 底层原理 1. MyCAT 2 架构概述 MyCAT 2 是一款开源的数据库中间件,它通过分库分表、读写分离、动态路由等机制提升数据库系统的性能和扩展性。MyCAT 2 的架构设计灵活,适用于多种数据库类型,包括 MySQL、PostgreSQL 和 SQL Server …...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
spring:实例工厂方法获取bean
spring处理使用静态工厂方法获取bean实例,也可以通过实例工厂方法获取bean实例。 实例工厂方法步骤如下: 定义实例工厂类(Java代码),定义实例工厂(xml),定义调用实例工厂ÿ…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...

初探Service服务发现机制
1.Service简介 Service是将运行在一组Pod上的应用程序发布为网络服务的抽象方法。 主要功能:服务发现和负载均衡。 Service类型的包括ClusterIP类型、NodePort类型、LoadBalancer类型、ExternalName类型 2.Endpoints简介 Endpoints是一种Kubernetes资源…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...

macOS 终端智能代理检测
🧠 终端智能代理检测:自动判断是否需要设置代理访问 GitHub 在开发中,使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新,例如: fatal: unable to access https://github.com/ohmyzsh/oh…...

Redis上篇--知识点总结
Redis上篇–解析 本文大部分知识整理自网上,在正文结束后都会附上参考地址。如果想要深入或者详细学习可以通过文末链接跳转学习。 1. 基本介绍 Redis 是一个开源的、高性能的 内存键值数据库,Redis 的键值对中的 key 就是字符串对象,而 val…...
用 FFmpeg 实现 RTMP 推流直播
RTMP(Real-Time Messaging Protocol) 是直播行业中常用的传输协议。 一般来说,直播服务商会给你: ✅ 一个 RTMP 推流地址(你推视频上去) ✅ 一个 HLS 或 FLV 拉流地址(观众观看用)…...