当前位置: 首页 > news >正文

【华为OD机试B卷】服务器广播、需要广播的服务器数量(C++/Java/Python)

题目

题目描述

服务器连接方式包括直接相连,间接连接。

AB直接连接,BC直接连接,则AC间接连接。

直接连接和间接连接都可以发送广播。

给出一个N*N数组,代表N个服务器,

matrix[i][j] == 1
则代表ij直接连接;不等于 1 时,代表ij不直接连接。

matrix[i][i] == 1

即自己和自己直接连接。matrix[i][j] == matrix[j][i]

计算初始需要给几台服务器广播, 才可以使每个服务器都收到广播。

输入

输入为N行,每行有N个数字,为01,由空格分隔,

构成N*N的数组,N的范围为 1 <= N <= 40

输出

输出一个数字,为需要广播的服务器的数量

用例一

输入

1 0 0
0 1 0
0 0 1

输出

3

说明

3 台服务器互不连接,所以需要分别广播这 3 台服务器

用例二

输入

1 1
1 1

输出

1

说明

2 台服务器相互连接,所以只需要广播其中一台服务器

实现代码

C++
#include <iostream>
#include <vector>
using namespace std;int count = 0;void dfs(vector<vector<int>>& arr, vector<bool>& visited, int index) {visited[index] = true;bool flag = true;for (int i = index + 1; i < arr.size(); i++) {if (arr[index][i] == 1) {flag = false;dfs(arr, visited, i);}}if (flag) {count++;}
}int main() {string input;getline(cin, input);vector<string> str;size_t pos = 0;while ((pos = input.find(" ")) != string::npos) {str.push_back(input.substr(0, pos));input.erase(0, pos + 1);}str.push_back(input);int n = str.size();vector<vector<int>> arr(n, vector<int>(n, 0));for (int i = 0; i < n; i++) {arr[0][i] = stoi(str[i]);}for (int i = 1; i < n; i++) {getline(cin, input);pos = 0;vector<string> s;while ((pos = input.find(" ")) != string::npos) {s.push_back(input.substr(0, pos));input.erase(0, pos + 1);}s.push_back(input);for (int j = 0; j < n; j++) {arr[i][j] = stoi(s[j]);}}vector<bool> visited(n, false);for (int i = 0; i < n; i++) {if (!visited[i]) {dfs(arr, visited, i);}}cout << count << endl;return 0;
}
Java
import java.util.*;public class Main {public static void main(String[] args) {Scanner in = new Scanner(System.in);String[] str = in.nextLine().split(" ");int n = str.length;int[][] arr = new int[n][n];for(int i = 0; i < n; i++) {   arr[0][i] = Integer.parseInt(str[i]);}for(int i = 1; i < n; i++) {   String[] s = in.nextLine().split(" ");for(int j = 0; j < n; j++) {arr[i][j] = Integer.parseInt(s[j]);}}int count = 0;Queue<Integer> queue = new LinkedList<>();for(int i = 0; i < n; i++) {if(!queue.contains(i)) {dfs(arr, queue, i);count++;}}System.out.println(count);}public static void dfs(int[][] arr, Queue<Integer> queue, int index) {queue.offer(index);for (int i = index + 1; i < arr.length; i++) {if (arr[index][i] == 1 && !queue.contains(i)) {dfs(arr, queue, i);}}}
}
Python
import sysdef dfs(arr, visited, index):visited[index] = Trueflag = Truefor i in range(index + 1, len(arr)):if arr[index][i] == 1:flag = Falsedfs(arr, visited, i)if flag:global countcount += 1count = 0
str = input().split(" ")
n = len(str)
arr = [[0]*n for _ in range(n)]
for i in range(n):arr[0][i] = int(str[i])
for i in range(1, n):s = input().split(" ")for j in range(n):arr[i][j] = int(s[j])
visited = [False]*n
for i in range(n):if not visited[i]:dfs(arr, visited, i)
print(count)

相关文章:

【华为OD机试B卷】服务器广播、需要广播的服务器数量(C++/Java/Python)

题目 题目描述 服务器连接方式包括直接相连&#xff0c;间接连接。 A和B直接连接&#xff0c;B和C直接连接&#xff0c;则A和C间接连接。 直接连接和间接连接都可以发送广播。 给出一个N*N数组&#xff0c;代表N个服务器&#xff0c; matrix[i][j] 1&#xff0c; 则代表i和j直…...

目标检测数据集 - 手机屏幕表面表面缺陷检测数据集下载「包含VOC、COCO、YOLO三种格式」

数据集介绍&#xff1a;手机屏幕表面缺陷检测数据集&#xff0c;真实采集高质量手机屏幕表面含缺陷图片数据&#xff0c;数据集含多款不同型号和品牌的手机屏幕表面图片数据&#xff0c;包括苹果手机屏、三星手机屏、华为手机屏等数据。数据标注标签包括 Bubble 气泡/水滴、Scr…...

语音相关算法学习整理

最近看了一下百度paddlespeech的一些公开课&#xff0c;把课程里的视频内容大体听了一下&#xff0c;现在整理一下笔记。教程链接见&#xff1a;飞桨AI Studio星河社区-人工智能学习与实训社区 语音识别的过程可以这样简单概括&#xff1a; 将声音信号经过预加重、加窗、fft等…...

[C#] opencvsharp对Mat数据进行序列化或者反序列化以及格式化输出

【简要介绍】 在OpenCVSharp中&#xff0c;FileStorage类用于将数据&#xff08;包括OpenCV的Mat类型数据&#xff09;序列化为XML或YAML格式的文件&#xff0c;以及从这些文件中反序列化数据。以下是关于FileStorage类用法的详细说明&#xff1a; 写入数据&#xff08;序列化…...

Linux中的TCP与UDP:理解两者的差异

在计算机网络的世界中&#xff0c;TCP&#xff08;传输控制协议&#xff09;和UDP&#xff08;用户数据报协议&#xff09;是两种至关重要的传输层协议。它们就像是我们日常生活中的通信方式&#xff0c;有着不同的使用场景和优缺点。通过一个简单的比喻&#xff0c;我们可以更…...

通信系统网络架构_1.局域网网络架构

当今&#xff0c;通信网络从大的方面主要包括局域网、广域网、移动通信网等网络形式。不同的网络会采用不同的技术进行网络构建。以下针对不同的网络给出各自的网络架构以及所采用的技术。 1.概述 局域网&#xff0c;即计算机局部区域网络&#xff0c;是一种为单一机构所拥有的…...

Pycharm 启动 Django项目 —— python篇

1、打开你的工程&#xff0c;在菜单栏里找到Run-->Edit Configurations 2、在打开的对话框里边选择Python&#xff0c;点击号 3.选择Python 4.出现了一个新的项Unnamed&#xff0c;你可以把它改名叫debug&#xff0c;好听一点 5.脚本选择你网站的manage.py&#xff0c;脚本参…...

6-47选择整数计算

整数计算&#xff1a; 用swing组件来实现整数计算&#xff0c;需要对整数计算的值进行校验。 import javax.swing.*; import java.awt.*; import java.awt.event.*;public class IntegerCalculator extends JFrame implements ActionListener {private JCheckBox[] checkBoxe…...

什么是Redis?|介绍与使用及特点浅记

Redis简介 Redis&#xff08;Remote Dictionary Server&#xff09;是一种基于内存、支持持久化的键值对存储系统&#xff0c;具有丰富的数据结构和高性能的特性。它不仅可以作为数据库&#xff0c;还可以作为缓存和消息中间件使用。Redis是单线程模型&#xff0c;但利用IO多路…...

LeetCode题练习与总结:只出现一次的数字Ⅱ--137

一、题目描述 给你一个整数数组 nums &#xff0c;除某个元素仅出现 一次 外&#xff0c;其余每个元素都恰出现 三次 。请你找出并返回那个只出现了一次的元素。 你必须设计并实现线性时间复杂度的算法且使用常数级空间来解决此问题。 示例 1&#xff1a; 输入&#xff1a;n…...

Live Wallpaper Themes 4K Pro for Mac v19.9 超高清4K动态壁纸

Live Wallpaper & Themes 4K Pro for Mac v19.7 是一款专为Mac用户设计的超高清4K动态壁纸应用程序。它凭借出色的视觉效果和丰富的个性化设置&#xff0c;为用户带来全新的桌面体验。 这款软件提供了大量精美的动态壁纸供用户选择&#xff0c;涵盖了各种风格和主题&#…...

vue3+ts:监听dom宽高变化函数

一、效果展示 二、代码 getSize.ts import { ref, Ref, watchEffect } from "vue";export const getWidth (domRef: Ref<HTMLElement | null>) > {const width ref<number>(0);const height ref<number>(0);const observer new ResizeObs…...

数据库浅识及MySQL的二进制安装

数据库基础概念与MySQL二进制安装与初始化 使用数据库的必要性 数据库可以结构化储存大量数据信息&#xff0c;方便用户进行有效的检索访问 有效的保持数据信息的一致性&#xff0c;完整性&#xff0c;降低数据冗余 可以满足应用的共享和安全方面的要求 数据库基本概念 数据…...

机器学习之数学基础(七)~过拟合(over-fitting)和欠拟合(under-fitting)

目录 1. 过拟合与欠拟合 1.1 Preliminary concept 1.2 过拟合 over-fitting 1.3 欠拟合 under-fitting 1.4 案例解析&#xff1a;黑天鹅 1. 过拟合与欠拟合 1.1 Preliminary concept 误差 经验误差&#xff1a;模型对训练集数据的误差。泛化误差&#xff1a;模型对测试…...

⭐最新版!SpringBoot正确集成PageHelper姿势,不再被误导!

GGBond&#x1f508; CSDN的朋友们大家好哇&#xff0c;我是新来的Java练习生 CodeCodeBond&#xff01; 什么是PageHelper&#xff1f; 这里给不知道的人儿说明一下~~ 知道的xdm可以跳过了&#xff01; PageHelper顾名思义是一个 页面 帮手。也就是分页查询的一个好用的工具…...

解决:Xshell通过SSH协议连接Ubuntu服务器报“服务器发送了一个意外的数据包,received:3,expected:20”

下图所示&#xff1a; 日志也基本看不出来问题在哪&#xff0c;只是说断开了连接大概是验证失败。有幸在某论坛评论区找到了原因&#xff0c;是因为我的xshell版本太低了而服务器的ssh版本太高&#xff0c;高版本的ssh默认屏蔽了一部分不太安全的算法导致建立连接的时候验证失败…...

[学习笔记] 禹神:一小时快速上手Electron笔记,附代码

课程地址 禹神&#xff1a;一小时快速上手Electron&#xff0c;前端Electron开发教程_哔哩哔哩_bilibili 笔记地址 https://github.com/sui5yue6/my-electron-app 进程通信 桌面软件 跨平台的桌面应用程序 chromium nodejs native api 流程模型 main主进程 .js文件 node…...

Java stream操作流常用的方式

在Java中&#xff0c;Stream操作流是Java 8新引入的一个功能&#xff0c;它提供了很多强大的操作&#xff0c;方便我们进行集合的处理和操作。常用的Stream操作方式有&#xff1a; 1.过滤&#xff1a;使用filter()方法可以过滤掉集合中不符合条件的元素。 2.映射&#xff1a;…...

【C#】图形图像编程

实验目标和要求&#xff1a; 掌握C#图形绘制基本概念&#xff1b;掌握C#字体处理&#xff1b;能进行C#图形图像综合设计。 运行效果如下所示&#xff1a; 1.功能说明与核心代码 使用panel为画板&#xff0c;完成以下设计内容&#xff1a; 使用pen绘制基础图形&#xff1b;使…...

埃特巴什码加解密小程序

埃特巴什码加解密小程序 这几天在看CTF相关的课程&#xff0c;涉及到古典密码学和近代密码学还有现代密码学。 简单替换密码 Atbash Cipher 埃特巴什码(Atbash Cipher)其实可以视为下面要介绍的简单替换密码的特例&#xff0c;它使用字母表中的最后 一个字母代表第一个字母…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库&#xff0c;获取股票数据&#xff0c;并生成TabPFN这个模型 可以识别、处理的格式&#xff0c;写一个完整的预处理示例&#xff0c;并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务&#xff0c;进行预测并输…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

人机融合智能 | “人智交互”跨学科新领域

本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...

【C++进阶篇】智能指针

C内存管理终极指南&#xff1a;智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...