AcWing算法基础课笔记——高斯消元
高斯消元
用来求解方程组
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 … a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = b_1\\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = b_2\\ \dots \\ a_{n1} x_1 + a_{n2} x_2 + \dots + a_{nn} x_n = b_n\\ a11x1+a12x2+⋯+a1nxn=b1a21x1+a22x2+⋯+a2nxn=b2…an1x1+an2x2+⋯+annxn=bn
输入是 n × ( n − 1 ) n \times (n -1 ) n×(n−1)的矩阵。
对方程组进行以下三种初等行列变换后,方程的解不变:
- 把某一行乘以一个非零的数
- 交换某2行
- 把某行的若干倍加到另一行上去
因此,对任意一个方程组,可以把它变成倒三角形式:
a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 22 x 2 + ⋯ + a 2 n x n = b 2 … a ( n − 1 ) ( n − 1 ) x n − 1 + a ( n − 1 ) n x n = b n − 1 a n n x n = b n a_{11}x_1 + a_{12}x_2+\dots +a_{1n}x_n = b_1 \\ a_{22}x_2 + \dots + a_{2n} x_n = b_2 \\ \dots \\ a_{(n-1)(n-1)}x_{n-1} +a_{(n-1)n}x_{n} = b_{n-1}\\ a_{nn}x_n = b_n a11x1+a12x2+⋯+a1nxn=b1a22x2+⋯+a2nxn=b2…a(n−1)(n−1)xn−1+a(n−1)nxn=bn−1annxn=bn
有三种情况:
- 完美阶梯型——唯一解
- 0 = 非零 ———无解
- 0 = 0 ——无穷多组解
高斯消元步骤:
枚举每一列c:
- 找到绝对值最大的一行
- 将该行换到最上面
- 将该行第一个数变成1
- 将下面所有行的第c列消成0
题目
详见:https://www.acwing.com/problem/content/description/885/
输入一个包含 n 个方程 n 个未知数的线性方程组。
方程组中的系数为实数。
求解这个方程组。
下图为一个包含 m 个方程 n 个未知数的线性方程组示例:

输入格式
第一行包含整数 n。
接下来 n 行,每行包含 n+1 个实数,表示一个方程的 n 个系数以及等号右侧的常数。
输出格式
如果给定线性方程组存在唯一解,则输出共 n 行,其中第 i 行输出第 i 个未知数的解,结果保留两位小数。
注意:本题有 SPJ,当输出结果为 0.00 时,输出 -0.00 也会判对。在数学中,一般没有正零或负零的概念,所以严格来说应当输出 0.00,但是考虑到本题作为一道模板题,考察点并不在于此,在此处卡住大多同学的代码没有太大意义,故增加 SPJ,对输出 -0.00 的代码也予以判对。
如果给定线性方程组存在无数解,则输出 Infinite group solutions。
如果给定线性方程组无解,则输出 No solution。
数据范围
1≤n≤100,
所有输入系数以及常数均保留两位小数,绝对值均不超过 100。
输入样例:
3
1.00 2.00 -1.00 -6.00
2.00 1.00 -3.00 -9.00
-1.00 -1.00 2.00 7.00
输出样例:
1.00
-2.00
3.00
代码
#include<iostream>
#include<algorithm>
#include<cmath>using namespace std;const int N = 110;
const double eps = 1e-6;int n;
double a[N][N];int gauss() {int c, r;for(c = 0, r = 0; c < n; c ++ ) {// 找到绝对值最大的一行 t int t = r;for(int i = r; i < n; i ++ ) {if(fabs(a[i][c]) > fabs(a[t][c])) {t = i;}}if(fabs(a[t][c]) < eps) continue; //如果第t行为0,结束//将该行换到最上面 for(int i = c; i <= n; i ++ ) swap(a[t][i], a[r][i]); //将该行的第c位设为1(前面都为0) for(int i = n; i >= c; i --) a[r][i] /= a[r][c];//将下面所有行的第c列消成0//也就是从r + 1行开始,对于第i行,第i行第c个位置a[i][c]如果不为0的话,就要消成0// a[i][c]消成0 : a[i][c] -= a[r][c] * a[i][c] a[r][c]为1// 那么其他所有列: a[i][j] -= a[r][j] * a[i][c]for(int i = r + 1; i < n; i ++ ) {if(fabs(a[i][c]) > eps) {for(int j = n; j >= c; j -- ) {a[i][j] -= a[r][j] * a[i][c];}}}r ++; }if(r < n) {for(int i = r; i < n; i ++ ) {if(fabs(a[i][n]) > eps)return 2; //无解 }return 1; //有无穷多组解 }//求解唯一解 //从第n - 1 行开始往上,遍历每一行//对于第i行,它的解是a[i][n]的值 for(int i = n - 1; i >= 0; i -- ) {for(int j = i + 1; j < n; j ++ ) {a[i][n] -= a[i][j] * a[j][n];}}return 0; //有唯一解 } int main() {cin >> n;for(int i = 0; i < n; i ++ ) {for(int j = 0; j <= n; j ++ ) {cin >> a[i][j];}}int t = gauss();if(t == 0) {for(int i = 0; i < n; i ++ ) printf("%.2lf\n", a[i][n]);}else if (t == 1) puts("Infinite group solutions");else puts("No solution");return 0;
}
相关文章:
AcWing算法基础课笔记——高斯消元
高斯消元 用来求解方程组 a 11 x 1 a 12 x 2 ⋯ a 1 n x n b 1 a 21 x 1 a 22 x 2 ⋯ a 2 n x n b 2 … a n 1 x 1 a n 2 x 2 ⋯ a n n x n b n a_{11} x_1 a_{12} x_2 \dots a_{1n} x_n b_1\\ a_{21} x_1 a_{22} x_2 \dots a_{2n} x_n b_2\\ \dots \\ a…...
【JavaScript脚本宇宙】图形魔术:探索领先的图像处理库及其独特功能
深入了解HTML5视频:最受欢迎的库及其功能 前言 图像处理是现代数字媒体开发中不可或缺的一部分,从调整图像大小到创建复杂的图形场景。有许多库可用,每个库都有其特定的优点和适用场景。在本文中,我们将探讨六种流行的图像处理库…...
Nemotron-4
Nemotron-4是英伟达(NVIDIA)发布的一系列高级人工智能模型,特别着重于大尺度语言模型(LLMs)的发展。这些模型在不同的参数量级上展现出了卓越的性能和效率,其中特别提到了150亿参数的Nemotron-4 15B和3400亿…...
【神经网络】神经元的基本结构和训练过程
🎈个人主页:豌豆射手^ 🎉欢迎 👍点赞✍评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共同学习、交流进步! 神经元的基本结构和训练过程 …...
第28课 绘制原理图——绘制导线
概述 放置完元器件之后,接着就要用导线将元器件的管脚一个一个连起来了。 绘制导线的方法 点击快速工具条上的“线”命令,进入绘制导线的过程。 点击选择某个管脚或电源端口,作为导线的起始端。 再点击选择另一个管脚或电源端口,…...
NLP 相关知识
NLP 相关知识 NLPLLMPrompt ChainingLangChain NLP NLP(Natuarl Language Processing)是人工智能的一个分支,中文名自然语言处理,专注于处理和理解人类使用的自然语言。它涵盖了多个子领域,如文本分类、情感分析、机器…...
Java中的设计模式:实战案例分享
Java中的设计模式:实战案例分享 大家好,我是免费搭建查券返利机器人省钱赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿! 设计模式是软件开发中的宝贵工具,它们为常见的问题提供…...
并发编程理论基础——合适的线程数量和安全的局部变量(十)
多线程的提升方向 主要方向在于优化算法和将硬件的性能发挥到极致想要发挥出更多的硬件性能,最主要的就是提升I/O的利用率和CPU的利用率以及综合利用率操作系统已经解决了磁盘和网卡的利用率问题,利用中断机制还能避免 CPU 轮询 I/O 状态,也提…...
Python使用抽象工厂模式和策略模式的组合实现生成指定长度的随机数
设计模式选择理由: 抽象工厂模式: 抽象工厂模式适合于创建一组相关或依赖对象的场景。在这里,我们可以定义一个抽象工厂来创建不同类型(数字、字母、特殊符号)的随机数据生成器。 策略模式: 策略模式允许你…...
python-17-零基础自学python-
学习内容:《python编程:从入门到实践》第二版 知识点: 类、子类、继承、调用函数 练习内容: 练习9-6:冰激凌小店 冰激凌小店是一种特殊的餐馆。编写一个名为IceCreamStand的类,让它继承为完成练习9-1或…...
Web应用和Tomcat的集成鉴权1-BasicAuthentication
作者:私语茶馆 1.Web应用与Tomcat的集成式鉴权 Web应用部署在Tomcat时,一般有三层鉴权: (1)操作系统鉴权 (2)Tomcat容器层鉴权 (3)应用层鉴权 操作系统层鉴权包括但不限于:Tomcat可以和Windows的域鉴权集成,这个适合企业级的统一管理。也可以在Tomcat和应用层独立…...
解决Linux下Java应用因内存不足而崩溃的问题
在Linux系统中运行内存密集型的Java应用时,经常会遇到因系统内存不足而导致应用崩溃的问题。本文将探讨如何诊断这类问题以及提供有效的解决方案。 问题诊断 首先,使用 free -h 命令查看系统的内存使用情况,得到以下输出: total…...
ardupilot开发 --- 视觉伺服 篇
风驰电掣云端飘,相机无法对上焦 1.视觉伺服分类2.视觉伺服中的坐标系3.成像模型推导4.IBVS理论推导5.IBVS面临的挑战6.visp 实践参考文献 1.视觉伺服分类 控制量是在图像空间中推导得到还是在欧式空间中推导得到,视觉伺服又可以分类为基于位置(PBVS)和基…...
KVM配置嵌套虚拟化
按照以下步骤启用、配置和开始使用嵌套虚拟化,默认情况下禁用该功能,要启用它,请在宿主机物理机上进行配置。在centos stream 9和ubuntu 22部署kvm默认支持虚拟机嵌套虚拟化。 1、英特尔 1.1检查嵌套虚拟化在您的主机系统上是否可用 $cat /sys/module/kvm_intel/paramete…...
Springboot应用的信创适配-补充
Springboot应用的信创适配-CSDN博客 因为篇幅限制,这里补全Spring信创适配、数据库信创适配、Redis信创适配、消息队列信创适配等四个章节。 Springboot应用的信创适配 Springboot应用的信创适配,如上图所示需要适配的很多,从硬件、操作系统、…...
制图工具(14)导出图层字段属性信息表
在制图工具(13)地理数据库初始化工具中我们提到,有一个参数为:“输入Excel表”,并要求表格中的图层字段属性项需要按工具的帮助文档中的示例进行组织… 如下图: 此外,总有那个一个特别的需求&am…...
代码随想录——买股票的最佳时机Ⅱ(Leecode122)
添加链接描述 贪心 局部最优:手机每天的正利润 全局最优:求最大利润 class Solution {public int maxProfit(int[] prices) {int res 0;for(int i 1; i < prices.length; i){res Math.max(prices[i] - prices[i - 1], 0);}return res;} }...
使用Servlet开发javaweb,请求常见错误详解及其解决办法【404、405、500】
Servlet报错的情况多种多样,涵盖了配置错误、代码逻辑错误、资源未找到、权限问题等多个方面。以下是一些常见的Servlet报错情况及其可能的原因和解决方法: 404 Not Found: 错误原因图示: URL映射 发送请求,出现404错误 原因: 请…...
数据库管理-第210期 HaloDB-Oracle兼容性测试02(20240622)
数据库管理210期 2024-06-22 数据库管理-第210期 HaloDB-Oracle兼容性测试02(20240622)1 表增加列2 约束3 自增列4 虚拟列5 表注释6 truncat表总结 数据库管理-第210期 HaloDB-Oracle兼容性测试02(20240622) 作者:胖头…...
SpringBoot实现定时任务的动态停止和更新
目录 定时任务管理器定时任务的任务接口定时任务和定时任务结果的缓存对象定时任务使用姿势 定时任务管理器 负责启动一个定时任务、停止一个定时任务、更新一个定时任务 /*** 定时任务管理器* 1、创建并启动一个定时任务* 2、停止一个定时任务* 3、更新一个定时任务*/ publi…...
工业安全零事故的智能守护者:一体化AI智能安防平台
前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...
Java 二维码
Java 二维码 **技术:**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
Selenium常用函数介绍
目录 一,元素定位 1.1 cssSeector 1.2 xpath 二,操作测试对象 三,窗口 3.1 案例 3.2 窗口切换 3.3 窗口大小 3.4 屏幕截图 3.5 关闭窗口 四,弹窗 五,等待 六,导航 七,文件上传 …...
