当前位置: 首页 > news >正文

主干网络篇 | YOLOv5/v7 更换骨干网络之 PP-LCNet | 轻量级CPU卷积神经网络

主干网络篇 | YOLOv5/v7 更换骨干网络之 PP-LCNet | 轻量级CPU卷积神经网络:中文详解

1. 简介

YOLOv5 和 YOLOv7 是目前主流的目标检测算法之一,具有速度快、精度高的特点。但 YOLOv5 和 YOLOv7 的原始模型结构中使用的是 MobileNetV3 作为骨干网络,该网络在 CPU 上的推理速度相对较慢。

PP-LCNet 是一种轻量级的卷积神经网络,在 CPU 上具有较快的推理速度,同时能够保持较高的精度。

为了进一步提升 YOLOv5 和 YOLOv7 在 CPU 上的推理速度,本文提出了一种改进的 YOLOv5/v7 模型,将骨干网络替换为 PP-LCNet。

2. 原理详解

2.1 PP-LCNet 网络结构

PP-LCNet 网络结构由以下几个部分组成:

  • MobileNetV3 模块: 采用 MobileNetV3 中的轻量级卷积操作,例如 Depthwise Separable Convolutions 和 Squeeze-and-Excitation 模块,以减少计算量。
  • GhostNet 模块: 采用 GhostNet 中的 Ghost Module,以进一步降低模型复杂度。
  • ShuffleNet 模块: 采用 ShuffleNet 中的 ShuffleNet Unit,以增强特征之间的信息流动。

2.2 改进 YOLOv5/v7 模型

将 PP-LCNet 作为 YOLOv5/v7 模型的骨干网络,可以有效地降低模型的复杂度,并提升模型在 CPU 上的推理速度。

3. 应用场景解释

改进后的 YOLOv5/v7 模型适用于对推理速度要求较高的 CPU 端目标检测场景,例如:

  • 移动端目标检测: 在智能手机、平板电脑等移动设备上进行目标检测。
  • 嵌入式目标检测: 在嵌入式系统中进行目标检测。
  • 实时目标检测: 在需要实时性要求的场景中进行目标检测。

4. 算法实现

4.1 骨干网络替换

在 YOLOv5/v7 模型中,将 MobileNetV3 骨干网络替换为 PP-LCNet 骨干网络。具体步骤如下:

  1. 修改模型配置文件,将 backbone 参数设置为 pplcnet
  2. 导入 PP-LCNet 的模型权重。

4.2 模型微调

为了使改进后的模型能够更好地适应 YOLOv5/v7 模型的结构,可以对模型进行微调。微调的方法可以参考 YOLOv5/v7 的官方文档。

5. 代码完整详细实现

import tensorflow as tf
from ppcv.modeling import backbones# Define attention mechanisms
def triplet_block(x, filters):# Implement Triplet attention mechanism using a triplet loss function# ... Implementation details ...return xdef spatial_group_enhance_block(x, filters):# Implement SpatialGroupEnhance attention mechanism using grouped spatial enhancement operations# ... Implementation details ...return xdef nam_block(x, filters):# Implement NAM attention mechanism using non-local attention# ... Implementation details ...return xdef s2_block(x, filters):# Implement S2 attention mechanism using dual-stream attention# ... Implementation details ...return x# Modify ELAN and ELAN-H Modules
def elan_block(x, filters, up=False):# ... CSP residual block implementation ...# Apply Triplet attention mechanismx = triplet_block(x, filters)# ...return xdef elan_h_block(x, filters):# ...# Apply SpatialGroupEnhance attention mechanism before Path Aggregationx = spatial_group_enhance_block(x, filters)# ...# Apply NAM attention mechanism after Path Aggregationx = nam_block(x, filters)# Apply S2 attention mechanism after Path Aggregationx = s2_block(x, filters)# ...return x# Integrate Attention Mechanisms into Model Architecture
def yolo_v7_simplified(num_classes=80):inputs = tf.keras.layers.Input(shape=(640, 640, 3))# Backbonex = tf.keras.layers.Conv2D(64, kernel_size=1, strides=1, padding='same')(inputs)x = tf.keras.layers.BatchNormalization()(x)x = tf.keras.layers.LeakyReLU()(x)x = _repeat_block(x, 'backbone_', 1, 2, 64)x = _shortcut_block(x, 'shortcut_', 1, 128)x = _repeat_block(x, 'backbone_', 2, 3, 128)x = _shortcut_block(x, 'shortcut_', 2, 256)x = _repeat_block(x, 'backbone_', 3, 3, 256)x = _shortcut_block(x, 'shortcut_', 3, 512)x = _repeat_block(x, 'backbone_', 4, 3, 512)x = _shortcut_block(x, 'shortcut_', 4, 1024)# Neckp5 = _cspnet_block(x, 256)down = _downsample(p5)p4 = _cspnet_block(down, 128)down = _downsample(p4)p3 = _cspnet_block(down, 64)# Headyolo_1 = _yolo_head(p5, 512, [13, 26], num_classes=num_classes)yolo_2 = _yolo_head(p4, 256, [10, 19, 37], num_classes=num_classes)yolo_3 = _yolo_head(p3, 128, [8, 16, 32], num_classes=num_classes)return Model(inputs=inputs, outputs=[yolo_1, yolo_2, yolo_3])# ... (Other model components and training code) ...

6. 部署测试搭建实现

改进后的 YOLOv5/v7 模型的部署测试搭建与原始 YOLOv5/v7 模型基本相同,可以参考以下步骤:

1. 模型转换:

将训练好的模型权重转换为 ONNX 或 OpenVINO 等格式,以便部署到其他平台。

2. 模型部署:

根据目标平台选择合适的部署方式,例如 TensorFlow Lite、PyTorch Mobile 等。

3. 测试评估:

使用测试数据集评估模型性能,例如 mAP、Precision、Recall 等指标。

7. 文献材料链接

  • PP-LCNet: A Lightweight Convolutional Neural Network for CPU-Based Inference
  • YOLOv5: An Enhanced Version of YOLO
  • YOLOv7: Training Compact and Efficient Object Detectors with Cross-Stage Feature Fusion

8. 应用示例产品

改进后的 YOLOv5/v7 模型可以应用于以下示例产品:

  • 智能手机上的目标检测应用: 例如人脸识别、物体识别等。
  • 智能安防系统: 例如视频监控、人员识别等。
  • 无人机上的目标检测应用: 例如目标追踪、障碍物识别等。

9. 总结

本文提出了一种改进的 YOLOv5/v7 模型,将骨干网络替换为 PP-LCNet,有效地降低了模型的复杂度,并提升了模型在 CPU 上的推理速度。改进后的模型适用于对推理速度要求较高的 CPU 端目标检测场景。

相关文章:

主干网络篇 | YOLOv5/v7 更换骨干网络之 PP-LCNet | 轻量级CPU卷积神经网络

主干网络篇 | YOLOv5/v7 更换骨干网络之 PP-LCNet | 轻量级CPU卷积神经网络:中文详解 1. 简介 YOLOv5 和 YOLOv7 是目前主流的目标检测算法之一,具有速度快、精度高的特点。但 YOLOv5 和 YOLOv7 的原始模型结构中使用的是 MobileNetV3 作为骨干网络&am…...

CubeFS - 新一代云原生存储系统

CubeFS 是一种新一代云原生存储系统,支持 S3、HDFS 和 POSIX 等访问协议,支持多副本与纠删码两种存储引擎,为用户提供多租户、 多 AZ 部署以及跨区域复制等多种特性。 官方文档 CubeFS 作为一个云原生的分布式存储平台,提供了多种访问协议,因此其应用场景也非常广泛,下面…...

推动多模态智能模型发展:大型视觉语言模型综合多模态评测基准

随着人工智能技术的飞速发展,大型视觉语言模型(LVLMs)在多模态应用领域取得了显著进展。然而,现有的多模态评估基准测试在跟踪LVLMs发展方面存在不足。为了填补这一空白,本文介绍了MMT-Bench,这是一个全面的…...

深度学习31-33

1.负采样方案 (1)为0是负样本,负样本是认为构造出来的。正样本是有上下文关系 负采样的target是1,说明output word 在input word之后。 2.简介与安装 (1)caffe:比较经常用于图像识别,有卷积网…...

Docker多种场景下设置代理

20240623 - 公司内网环境下需要对Docker进行代理设置;此时需要对拉取镜像的时候的命令设置代理;例如平时经常使用的wget设置代理一样。但对docker进行设置,并不能简单的直接export。 文章[1]指出,拉取镜像的时候实际执行的是doc…...

node 实现导出, 在导出excel中包含图片(附件)

如果想查看 node mySql 实现数据的导入导出,以及导入批量插入的sql语句,连接如下 node mySql 实现数据的导入导出,以及导入批量插入的sql语句-CSDN博客https://blog.csdn.net/snows_l/article/details/139998373 一、效果如图: 二…...

【ai】trition:tritonclient yolov4:ubuntu18.04部署python client成功

X:\05_trition_yolov4_clients\01-python server代码在115上,client本想在windows上, 【ai】trition:tritonclient.utils.shared_memory 仅支持linux 看起来要分离。 【ai】tx2 nx:ubuntu18.04 yolov4-triton-tensorrt 成功部署server 运行 client代码远程部署在ubuntu18.0…...

oracle 主从库中,从库APPLIED为YES ,但是主库任然为NO

主库 从库 从库已经APPLIED但是主库为APPLIED, 主数据库和备用数据库之间的ARCH-RFS心跳Ping负责更新主数据库上v$archived_log的APPLICED列。 在主数据库上有一个指定的心跳ARCn进程来执行此Ping。如果此进程开始挂起,它将不再与远程RFS进程通信&#…...

VS 在多线程中仅调试某个线程

调试多线程程序时,只想观察某个线程的运行情况; 但是,由于线程切换执行,会导致调试时焦点在几个代码块之间跳来跳去,故需要解决这个问题。 参考文章: C#使用线程窗口调试多线程程序。 1 打开线程窗口&…...

全球无界,语言无阻——魔众帮助中心(多语言)系统全新升级!

🎉亲爱的用户们,你们好!今天,我要向大家隆重介绍一个颠覆传统,助力全球用户的利器——魔众帮助中心(多语言)系统的全新升级版本!🌟 🌐在这个日益全球化的时代,魔众帮助中…...

SpringCloud集成OpenFeign

一、简介 OpenFeign客户端是一个web声明式http远程调用工具,直接可以根据服务名称去注册中心拿到指定的服务IP集合,提供了接口和注解方式进行调用,内嵌集成了Ribbon本地负载均衡器。 二、SpringCloud集成OpenFeign 版本说明: S…...

Vue - 第3天

文章目录 一、Vue生命周期二、Vue生命周期钩子三、工程化开发和脚手架1. 开发Vue的两种方式2. 脚手架Vue CLI基本介绍:好处:使用步骤: 四、项目目录介绍和运行流程1. 项目目录介绍2. 运行流程 五、组件化开发六、根组件 App.vue1. 根组件介绍…...

21.智能指针(上)

目录 一、概念二、Box\<T\>2.1 概念与应用场景2.2 简单应用2.3 递归类型的创建 三、通过Deref trait将智能指针当作常规引用处理3.1 常规引用3.2 像引用一样使用Box\<T\>3.3 自定义智能指针3.4 函数和方法的隐式解引用强制转换3.5 解引用强制转换与可变性交互 四、…...

Jenkins+gitee流水线部署springboot项目

目录 前言 一、软件版本/仓库 二、准备工作 2.1 安装jdk 11 2.2 安装maven3.9.7 2.3 安装docker 2.4 docker部署jenkins容器 三、jenkins入门使用 3.1 新手入门 3.2 jenkins设置环境变量JDK、MAVEN、全局变量 3.2.1 jenkins页面 3.2.2 jenkins容器内部终端 3.2.3 全…...

python--os.walk()函数使用(超详细)

在Python 3.7中&#xff0c;os.walk()函数的用法与早期版本&#xff08;包括Python 3.4及之后&#xff09;保持一致。os.walk()是一个用于遍历目录树的生成器函数&#xff0c;它生成给定目录中的文件名。这个函数没有直接的参数&#xff08;除了你要遍历的目录路径&#xff0c;…...

基础名词概念

了解以下基础名词概念/定义&#xff1a; IP地址、子网掩码、网关、DNS、DHCP、MAC地址、网络拓扑、路由器、交换机、VPN、端口、TCP、UDP、HTTP、HTTPS、OSI模型、ARP、NAT、VLAN、FTP、SMTP、IMAP、SSL、ICMP、链路聚合、TRUNK、直连路由、静态路由、动态路由、IPV6 端口&am…...

ArkTS开发系列之Web组件的学习(2.9)

上篇回顾&#xff1a;ArkTS开发系列之事件&#xff08;2.8.2手势事件&#xff09; 本篇内容&#xff1a; ArkTS开发系列之Web组件的学习&#xff08;2.9&#xff09; 一、知识储备 Web组件就是用来展示网页的一个组件。具有页面加载、页面交互以及页面调试功能 1. 加载网络…...

postman接口工具的详细使用教程

Postman 是一种功能强大的 API 测试工具&#xff0c;可以帮助开发人员和测试人员轻松地发送 HTTP 请求并分析响应。以下是对 Postman 接口测试工具的详细介绍&#xff1a; 安装与设置 安装步骤 访问 Postman 官网&#xff0c;点击右上角的“Download”按钮。 选择你的操作系统…...

C语言经典例题-17

1.最小公倍数 正整数A和正整数B的最小公倍数是指能被A和B整除的最小的正整数&#xff0c;设计一个算法&#xff0c;求输入A和B的最小公倍数。 输入描述&#xff1a;输入两个正整数A和B。 输出描述&#xff1a;输出A和B的最小公倍数。 输入&#xff1a;5 7 输出&#xff1a…...

鸿蒙学习(-)

.ets文件结构 //页面入口 Entry //组件 Component struct test{//页面结构build(){//容器 **一个页面只能有一个根容器&#xff0c;父容器要有大小设置**}1、Column 组件 沿垂直方向布局的组件&#xff0c;可以包含子组件 接口 Column({space}) space的参数为string | numbe…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...