当前位置: 首页 > news >正文

最大值池化与均值池化比较分析

1 问题

在深度学习的卷积网络过程中,神经网络有卷积层,池化层,全连接层。而池化层有最大值池化和均值池化两种情况,而我们组就在思考,最大值池化和均值池化有什么区别呢?两者的模型准确率是否有所不同?

2 方法

这是所有的代码,主要改变卷积层中的最大值池化和均值池化的相关代码即可。也就是maxpool2d和avgpool2d的应用。

class MyNet(nn.Module):
   # (5.2)定义网络有哪些层,这些层都作为成员变量
   def __init__(self) -> None:
       super().__init__()
       self.conv1=nn.Conv2d(in_channels=1,out_channels=16,
           kernel_size=3,stride=1,padding=1)
       self.conv2=nn.Conv2d(in_channels=16,out_channels=32,
           kernel_size=3,stride=1,padding=1)
       self.max_pool=nn.MaxPool2d(kernel_size=2,
           stride=2)
       #self.avg_pool=nn.AvgPool2d(kernel_size=2,stride=2)
       self.fc=nn.Linear(in_features=32*14*14,
           out_features=10)
   def forward(self, x):
       x=self.conv1(x)
       x=self.conv2(x)
       x=self.max_pool(x)
       #x=self.avg_pool(x)
       #[B,C,H,W]
       #1的目的是拉伸C,H,W,不拉伸B
       x=torch.flatten(x,1)
       out=self.fc(x)
       return out

f4aa04d0d254cd6ef104fac9fd0bbc98.png

51ec002ca54e9641cf9e7d8c7f9e3185.png1dba10385fc7fceb75cbc1617aaa3a8b.png然后我们训练了100个周期,通过比较2者的准确率和损失值来比较分析。

两者分别是均值池化和最大值池化,可以从图中看出,不论是均值池化还是最大值池化,两者的准确率都是前10个周期准确率猛增。而在10个周期之后,均值池化的准确率是基于平稳的,并且train和val的准确率是交错的。最大值池化的准确率还是在继续增长,虽然增长幅度不是太大,并且train和val的准确率是分开的,一直保持没有交错。

均值池化的test准确率为9e55a962d8a5fd69fb45d73142a35c34.png

最大值池化的test准确率为54f1e1ef7d8b3cdf5721996346c140e6.png

能够看出来,最大值池化的准确率高于均值池化的准确率。

两者分别是均值池化和最大值池化,可以看出两者的loss率其实差别不大,但是最大值池化的loss下降明显先猛烈下降然后再逐渐下降的,均值池化是先猛烈下降然后基于平稳的。99165ec67b9299131cce391f770bc290.pngdeb07a676cf8a687557dd8f2667e9b3c.png

3 结语

对于均值池化和最大值池化的比较分析,我们运用了100个周期训练模型然后画图比较准确率和loss,发现最大值池化的准确率高于均值池化的准确率,但是均值池化的准确率在训练周期较少时,准确率较高,而最大值池化的准确率在训练周期较多时,准确率较高,说明这个方法是有效的,但是本次实验并没有对一个方法进行多次训练,较少偶然性,未来我们可以继续研究多次训练之后的模型的预测准确率是否有较大差异,来验证是否具有实验偶然性。

相关文章:

最大值池化与均值池化比较分析

1 问题在深度学习的卷积网络过程中,神经网络有卷积层,池化层,全连接层。而池化层有最大值池化和均值池化两种情况,而我们组就在思考,最大值池化和均值池化有什么区别呢?两者的模型准确率是否有所不同&#…...

统计学 多元线性回归

文章目录统计学 多元线性回归多元线性回归模型拟合优度显著性检验线性关系检验回归系数检验多重共线性及其处理多重共线性的问题多重共线性的识别与处理变量选择利用回归方程进行预测哑变量回归统计学 多元线性回归 多元线性回归模型 多元线性回归模型:设因变量为…...

tar和gzip压缩和解压

打包和压缩的区别:打包:将多文件 封装在一起压缩:将多文件 封装在一起 通过特定的算法 将冗余的数据 进行删除tar默认是打包命令,如果想用tar进行压缩 必须加选项1、gzip格式压缩:tar zcvf 压缩包包名 文件1 文件2 文件…...

搭建Docker企业私有仓库

什么是仓库 仓库(Repository)是存储和分发 Docker 镜像的地方。镜像仓库类似于代码仓库,Docker Hub 的命名来自 GitHub,Github 是我们常用的代码存储和分发的地方。同样 Docker Hub 是用来提供 Docker 镜像存储和分发的地方。 谈…...

[NOIP2009 提高组] 最优贸易(C++,tarjan,topo,DP)

题目描述 $C 国有国有国有 n 个大城市和个大城市和个大城市和 m$ 条道路,每条道路连接这 nnn个城市中的某两个城市。任意两个城市之间最多只有一条道路直接相连。这 mmm 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双向通行的…...

计算机网络:移动IP

移动IP相关概念 移动IP技术是移动结点(计算机/服务器)以固体的网络IP地址,实现跨越不同网段的漫游功能,并保证了基于网络IP的网络权限在漫游中不发生任何改变。移动结点:具有永久IP地址的设备。归属代理(本…...

binutils工具集——GNU binutils工具集简介

以下内容源于网络资源的学习与整理,如有侵权请告知删除。 GNU binutils是一个二进制工具集,主要包括: ld,GNU链接器。as,GNU汇编器。addr2line,把地址转化为文件名和行号。nm,列出目标文件的符…...

Golang编译选项(ldflags)有趣应用

本文介绍如何在构建时使用ldflags选项给Golang应用程序注入变量,用于给Go可执行文件增加版本标识或GIT提交摘要等信息。 应用程序的版本信息 我们首先查看Docker Cli 包含的提交信息: docker version 返回结果: Server: Docker Engine - Co…...

AIR32F103(十一) 在AIR32F103上移植微雪墨水屏驱动

目录 AIR32F103(一) 合宙AIR32F103CBT6开发板上手报告AIR32F103(二) Linux环境和LibOpenCM3项目模板AIR32F103(三) Linux环境基于标准外设库的项目模板AIR32F103(四) 27倍频216MHz,CoreMark跑分测试AIR32F103(五) FreeRTOSv202112核心库的集成和示例代码AIR32F103(六) ADC,I2S…...

Uipath Excel 自动化基础系列文章

Uipath Excel 自动化基础系列文章已发布到CSDN,网址:https://blog.csdn.net/Marshaljun?typeblog (3月份会在CSDN博客发布Uipath Excel 实战课程及经验分享) Uipath Studio流程设计器介绍 https://blog.csdn.net/Marshaljun/article/details/128699022 Uipath St…...

神经网络优化器之随机梯度下降法的理解

随机梯度下降法(SGD)随机梯度下降方法,在每次更新时用1个样本,随机也就是说我们用样本中的一个例子来近似我所有的样本,由于计算得到的并不是准确的一个梯度,因而不是全局最优的。但是相比于批量梯度&#…...

记录一次WIN11开机在登录页面循环的问题

记录一次由于未进行win密码设置,导致开机后卡在登录界面无法登录进去的问题。最后完美解决了。 1. 背景 开机后,显示用户登录界面,但是和以往不同,没有了密码输入框,只有一个“登录”按钮孤零零地显示在屏幕中间&…...

始终从最不易改变的方面开始

在你刚开始新工作、转换职业或者是加入新项目时,始终从最不易改变的方面开始。 在工作中,这可能意味着与团队成员建立关系,了解公司的流程和文化,或者熟悉公司的产品或服务。 在一项新项目中,这可能意味着了解项目范…...

4、Httpclient源码解析之HTTP协议

初始化CloseableHttpClient过程中涉及ExecChainHandler & DefaultHttpProcessor,即典型客户端责任链中的请求执行处理器。 责任链中各节点涉及请求处理器【ExecChainHandler】顺序如下:RedirectExec、ContentCompressionExec、HttpRequestRetryExec…...

浏览器并发行为记录

使用nodejs koa起一个服务,使请求延时返回。 服务端代码 /** 延时 */ exports.timeoutTestData async function (ctx) {console.log(get query:, ctx.request.query);const query ctx.request.query;let timeout query.timeout || 2000;await new Promise(res…...

工厂模式与抽象工厂

原理:逻辑和业务全部封装 不需要细节 只要结果 示例: # 简单工厂 class SimpleFactory:# 产品staticmethoddef product(name):return nameif __name__ "__main__":product SimpleFactory.product("Gitee")print(product) 装饰器…...

什么?你不知道 ConcurrentHashMap 的 kv 不能为 null?

一、背景 最近设计某个类库时使用了 ConcurrentHashMap 最后遇到了 value 为 null 时报了空指针异常的坑。 本文想探讨下以下几个问题: (1) Map接口的常见子类的 kv 对 null 的支持情况。 (2)为什么 ConcurrentHashM…...

SQL复习04 | 复杂查询

1. 视图 视图和表的区别: 表保存的是实际的数据视图保存的是SELECT语句 视图的优点: 视图无需保存数据,可节省存储设备的容量可以将频繁使用的SELECT语句保存成视图,可大大提高效率 1.1 创建视图 CREATE VIEW 视图名称&…...

【面试题】Java面试题汇总(无解答)

此内容会持续补充。。。 基础 short s1 1; s1 s1 1;有错吗? short s1 1; s1 1; 有错吗?String str”aaa”,与 String strnew String(“aaa”)一样吗?String 和 StringBuilder、StringBuffer 的区别?Sring最大能存多大内容&#xff1f…...

C++---背包模型---收服精灵(每日一道算法2023.3.11)

注意事项: 本题是"动态规划—01背包"的扩展题,优化的思路不多赘述,dp思路会稍有不同,下面详细讲解。 本题偏向阅读理解,给每种变量归类起名字很有帮助哦。 切记先看思路,再看代码。(大…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

React Native 导航系统实战(React Navigation)

导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...