当前位置: 首页 > news >正文

阅读笔记DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

zi,t∈Rz_{i,t}\in \mathbb{R}zi,tR表示时间序列iiittt时刻的值。给一个连续时间段t∈[1,T]t\in [1, T]t[1,T],将其划分为context window[1,t0)[1,t_0)[1,t0)和prediction window[t0,T][t_0,T][t0,T]。用context window的时间序列预测prediction window的时间序列的目标分布是
P(zi,t0:T∣zi,1:t0−1,xi,1:T)P(\mathbf z_{i,t_0:T} | \mathbf z_{i,1:t_0-1}, \mathbf x_{i,1:T}) P(zi,t0:Tzi,1:t01,xi,1:T)其中xi,t\mathbf x_{i,t}xi,t是协变量(covariate),也就是特征,可以是时间相关的,也可以是序列相关的,比如day-of-the-week、hour-of-the-day等。
作者用自回归(autoregressive)模型建模上面时间序列的概率:
QΘ(zi,t0:T∣zi,1:t0−1,xi,1:T)=Πt=t0TQΘ(zi,t∣zi,1:t−1,xi,1:T)=Πt=t0Tl(zi,t∣θ(hi,t,Θ))Q_\Theta(\mathbf z_{i,t_0:T} | \mathbf z_{i,1:t_0-1}, \mathbf x_{i,1:T})=\Pi_{t=t_0}^TQ_\Theta(z_{i,t} | \mathbf z_{i,1:t-1}, \mathbf x_{i,1:T}) = \Pi_{t=t_0}^T l(z_{i,t} | \theta(\mathbf h_{i,t}, \Theta)) QΘ(zi,t0:Tzi,1:t01,xi,1:T)=Πt=t0TQΘ(zi,tzi,1:t1,xi,1:T)=Πt=t0Tl(zi,tθ(hi,t,Θ))其中hi,t=h(hi,t−1,zi,t−1,xi,t,Θ)\mathbf h_{i,t} = h(\mathbf h_{i,t-1}, z_{i, t-1}, \mathbf x_{i,t}, \Theta)hi,t=h(hi,t1,zi,t1,xi,t,Θ)是RNN的隐含表示。likelihood l(zi,t∣θ(hi,t,Θ))l(z_{i,t} | \theta(\mathbf h_{i,t}, \Theta))l(zi,tθ(hi,t,Θ))是一个分布,参数由θ(hi,t,Θ)\theta(\mathbf h_{i,t}, \Theta)θ(hi,t,Θ)给出。
在这里插入图片描述

likelihood l(zi,t∣θ(hi,t,Θ))l(z_{i,t} | \theta(\mathbf h_{i,t}, \Theta))l(zi,tθ(hi,t,Θ))的参数由网络预测,例如分布的mean和variance。具体地,作者对实数值选择Gaussian likelihood,对正的计数值选择negative-binomial likelihood。

优化目标是最大化log-likelihood:
L=∑i=1N∑t=t0Tlog⁡l(zi,t∣θ(hi,t))\mathcal L = \sum_{i=1}^N \sum_{t=t_0}^T \log l(z_{i,t} | \theta(\mathbf h_{i,t})) L=i=1Nt=t0Tlogl(zi,tθ(hi,t))因为模型没有隐变量,所以不需要inference,可以直接用梯度下降优化。需要优化的参数Θ\ThetaΘ包含RNN的参数,和计算分布参数的参数。

相关文章:

阅读笔记DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

zi,t∈Rz_{i,t}\in \mathbb{R}zi,t​∈R表示时间序列iii在ttt时刻的值。给一个连续时间段t∈[1,T]t\in [1, T]t∈[1,T],将其划分为context window[1,t0)[1,t_0)[1,t0​)和prediction window[t0,T][t_0,T][t0​,T]。用context window的时间序列预测prediction window…...

01.Java的安装

1.JDK&JREJDK : Java SE Development Kit--Java开发工具JRE : Java Runtime Environment--Java运行环境Java编程,需要安装JDK;如果仅仅是运行一款Java程序则只需要运行JREJava的安装包分为两类:一类是JRE--是一个独立的Java运行环境; 一类…...

【C语言深度剖析】关键字(全)

文章目录一.存储类型关键字前言补充1:内存思考:补充2:变量与内存的关系补充3:变量的分类补充4:存储类补充5:删除数据是怎么删除的?1.auto2.register3.static4.extern基本用法:基本功能5.typedef…...

English Learning - L2 语音作业打卡 双元音 [aʊ] [əʊ] Day15 2023.3.7 周二

English Learning - L2 语音作业打卡 双元音 [aʊ] [əʊ] Day15 2023.3.7 周二💌发音小贴士:💌当日目标音发音规则/技巧:🍭 Part 1【热身练习】🍭 Part2【练习内容】🍭【练习感受】🍓元音 /eɪ…...

记第一次面试的过程(C++)

说实话三月份上旬过得很充实,而且感觉蛮值,但还有不足的地方,今晚特地看完资料分析来复盘复盘。 时间还要回到3.2中午13.35(别问我为什么那么准确,刚刚掏手机看的),我正在吃着饭看着王者荣耀的直…...

06 电力电子仿真 MATLAB/Simulink

文章目录01 单相半波整流电路02 单相全波整流电路(子系统封装模块)03 三相桥式整流电路(三相模块与示波器使用)04 相控与斩控交交调压(THD计算)05 Buck电路(PWM实现与闭环反馈)06 单…...

搞懂面向对象这五大概念,才算真正跨过初学者到开发者的“分水岭“

文章目录前言一、对象二、类三、面向对象程序设计的特点1. 封装2. 继承3. 多态前言 面向对象程序设计是在面向过程程序设计的基础上发展而来的,它比面向过程编程具有更强的灵活性和扩展性。面向对象程序设计也是一个程序员发展的 “分水岭”,很多的初学者…...

基于DelayQueue实现的延时队列

基于java中延时队列的实现该文章,我们这次主要是来实现基于DelayQueue实现的延时队列。 使用DelayQueue实现的延时队列的步骤: 定义一个继承了Delayed的类,定义其中的属性,并重写compareTo和getDelay两个方法创建一个Delayqueue…...

MATLAB实现层次分析法AHP及案例分析

层次分析法(Analytic Hierarchy Process, AHP) 1 模型背景 美国运筹学家匹兹堡大学教授Saaty在20世纪70年代初提出的一种层次权重决策分析方法。 层次分析法(Analytic Hierarchy Process, AHP)是一种定性和定量分析相结合的决策分析方法。 特点:用较少的定量信息使决策的…...

Vue 3.0 TypeScript支持

Vue CLI 提供内置的 TypeScript 工具支持。 #NPM 包中的官方声明 随着应用的增长,静态类型系统可以帮助防止许多潜在的运行时错误,这就是为什么 Vue 3 是用 TypeScript 编写的。这意味着在 Vue 中使用 TypeScript 不需要任何其他工具——它具有一流的公…...

STM8S系列基于IAR标准外设printf输出demo

STM8S系列基于IAR标准外设printf输出demo📌STM8S/A标准外设库(库版本V2.3.1)📍官网标准外设库:https://www.st.com/zh/embedded-software/stsw-stm8069.html ⛳注意事项 🚩在内存空间比较有限的情况下&am…...

PMP项目管理项目质量管理

目录1 项目质量管理概述2 规划质量管理3 管理质量4 控制质量1 项目质量管理概述 项目质量管理包括把组织的质量政策应用于规则、管理、控制项目和产品质量要求,以满足相关方目标的各个过程。项目质量管理还将以组织的名义支持过程的持续改进活动。 核心概念 质量是…...

前缀和总结

前缀和是一个常用的算法技巧,通常用于求解数组或序列的区间和。 具体来说,假设有一个长度为n的数组a,我们可以预处理出一个长度为n+1的前缀和数组s,其中s[i]表示原数组a前i个元素的和,即: s[i] = a[0] + a[1] + ... + a[i-1] 这样一来,对于任意的区间[l, r],我们可以…...

0109二分图-无向图-数据结构和算法(Java)

文章目录1 概念2 API3 分析和实现4 测试5 总结后记1 概念 二分图是一种能将所有结点分为两部分的图,其中图的每条边所连接的两个顶点都分别属于不同的部分。 2 API public classBipartiteBipartite(Graph G)预处理函数public booleanisBipartitle()是否是二分图pub…...

计算机网络题库---选择题刷题训练(100多道精品)

第一章 概述 1.下列四项内容中,不属于Internet(因特网)基本功能是___D_____。 A.电子邮件 B.文件传输 C.远程登录 D.实时监测控制 2.Internet是建立在____C_____协议集上的国际互联网络。 A.IPX B.NetBEUI C.TCP/IP …...

16、字符串生成器

目录 (1)append()方法 (2)insert(int offset, arg)方法 (3)delete(int start , int end)方法 创建成功的字符串对象,其长度是固定的,内容不能被改变和编译。虽然使用“”可以达到…...

docker基本命令-容器

容器 基本概念 镜像(Image)和容器(Container)的关系,就像是面向对象程序设计中的 类 和 实例 一样,镜像是静态的定义,容器是镜像运行时的实体。容器可以被创建、启动、停止、删除、暂停等。 容…...

QT入门基础(一)

文章目录零.Qt背景1.什么是Qt2.Qt的发展史3.Qt的优势4.Qt应用一.第一个Qt程序0.项目创建1.main函数文件2.类头文件3.pro文件4.qt命名规范二.Qt按钮1.按钮创建和父子关系2.按钮常用api3.Qt窗口坐标体系4.对象树模型零.Qt背景 1.什么是Qt Qt是一个跨平台的C图形用户界面应用程序…...

WattOS:一个稳又快的轻量级 Linux 发行版

导读Linux 领域里的每个人不是听说过就是使用过某个轻量级的 Linux 发行版。大家都知道我们不断追求的是:占用内存少,配置资源要求低,包含一个轻量级的桌面环境(或者窗口管理器),并且提供和其他发行版相似的…...

Java调用Python脚本:轻松实现两种语言的互操作性

Java和Python都是非常流行的编程语言,它们都有自己的优点,但也有自己的局限性。在编写应用程序时,我们可能需要使用两种语言来共同完成一项任务。在这种情况下,Java需要调用Python脚本来解决某些问题,同时利用Java和Py…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验&#xff0c;我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育&#xff0c;这并非炒作&#xff0c;而是已经发生的巨大变革。教育机构和教育者不能忽视它&#xff0c;试图简单地禁止学生使…...

Kubernetes 节点自动伸缩(Cluster Autoscaler)原理与实践

在 Kubernetes 集群中&#xff0c;如何在保障应用高可用的同时有效地管理资源&#xff0c;一直是运维人员和开发者关注的重点。随着微服务架构的普及&#xff0c;集群内各个服务的负载波动日趋明显&#xff0c;传统的手动扩缩容方式已无法满足实时性和弹性需求。 Cluster Auto…...

第八部分:阶段项目 6:构建 React 前端应用

现在&#xff0c;是时候将你学到的 React 基础知识付诸实践&#xff0c;构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段&#xff0c;你可以先使用模拟数据&#xff0c;或者如果你的后端 API&#xff08;阶段项目 5&#xff09;已经搭建好&#xff0c;可以直接连…...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

ui框架-文件列表展示

ui框架-文件列表展示 介绍 UI框架的文件列表展示组件&#xff0c;可以展示文件夹&#xff0c;支持列表展示和图标展示模式。组件提供了丰富的功能和可配置选项&#xff0c;适用于文件管理、文件上传等场景。 功能特性 支持列表模式和网格模式的切换展示支持文件和文件夹的层…...