当前位置: 首页 > news >正文

核方法(kernel Method)

核方法

核方法定义

一种能够将在原始数据空间中的非线性数据映射到高维线性可分的方法。

核方法的用处

1、低维数据非线性,当其映射到高维空间(feature space)时,可以用线性方法对数据进行处理。
2、线性学习器相对于非线性学习器有更好的过拟合控制从而可以更好地保证泛化性能,同时,利用核函数将非线性映射隐含在线性学习器中进行同步计算,使得计算复杂度与高维特征空间的维数无关。

在这里插入图片描述
如上,是将二维空间的非线性数据通过ϕ\phiϕ,把数据映射到了三维空间中。
并且我们发现,在高维空间中两个数据的内积,是原空间中对应数据的函数
(如上的<ϕ(x1,x2)>,<ϕ(x1′,x2′)>=(<x,x′>)2<\phi(x_1,x_2)>,<\phi(x_1',x_2')>=(<x,x'>)^{2}<ϕ(x1,x2)>,<ϕ(x1,x2)>=(<x,x>)2),该函数被定义为K(x,x′)K(x,x')K(x,x),称为核函数(将原始空间中的向量作为输入向量,并返回特征空间(转换后的数据空间,可能是高维)中向量的点积的函数称为核函数)。
注意:将数据映射到不同的高维空间,其对应的核函数不同。

核函数作用

1、通过K(x,x′)K(x,x')K(x,x)我们可以直接计算出在feature space(高维空间)中点的两点间的距离平方和两个向量间的角度。
在这里插入图片描述
2、由于可以通过1中的方法计算出高维空间的距离和角度,我们完全可以不去计算出ϕ\phiϕ(一般ϕ\phiϕ难计算),可由K(x,x′)K(x,x')K(x,x)直接处理高维空间的数据。
3、避免在高维空间运作,选择一个特征空间,其中点积可以使用输入空间中的非线性函数直接求值,降低了计算的复杂度(在高维空间中考虑的维数过多,计算也相当复杂)。

核矩阵

在这里插入图片描述

核函数要满足的条件

有限正半定(给定任意有限 n个点(x1~xn),求解其矩阵是正定的)
在这里插入图片描述

常用核函数在这里插入图片描述

K(x,xi)K(x,x_i)K(x,xi)ϕ\phiϕ的关系

●只要知道kernel function,φ就不是必须的
●只要知道kernel function就可以达到计算需求
●有限半正定的kernel matrix可以使用
●k和φ是一一对应的
●知道kernel function 可以构建feature space

简单例子

yiy_iyi是标签,只有两个类别+1和-1,然后利用φ将x映射到更高维空间φ ( x ),下面就是投影之后的空间。同时计算出不同类别数据的两个中心点

在这里插入图片描述
然后计算出中垂线,通过新数据向量ϕ(x)\phi(x)ϕ(x)与向量w的所成角来判断新数据的类别
在这里插入图片描述

在这里插入图片描述
由上面知,可以通过sign函数来判断新数据类别
在这里插入图片描述
以下是<ϕ(x)−c,w><\phi(x)-c,w><ϕ(x)c,w>的计算方法,同样是可以用核函数来表示
在这里插入图片描述

Dual Representation

我们还可以用线性表达式来表示上面的式子
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

核方法(kernel Method)

核方法 核方法定义 一种能够将在原始数据空间中的非线性数据映射到高维线性可分的方法。 核方法的用处 1、低维数据非线性&#xff0c;当其映射到高维空间&#xff08;feature space&#xff09;时&#xff0c;可以用线性方法对数据进行处理。 2、线性学习器相对于非线性学…...

消息队列MQ用来做什么的,市场上主流的四大MQ如何选择?RabbitMQ带你HelloWorld!

文章目录MQ用来做什么的MQ会有什么样的麻烦MQ消息队列模式分类MQ消息队列常用协议市场主流四大MQRabbitMQ项目开发RabbitMQ中的组成部分MQ用来做什么的 省流 &#xff1a;系统解耦、异步调用、流量削峰 系统解耦 首先举例下面这个场景&#xff0c;现有ABCDE五个系统&#xff…...

2023年中国高校计算机大赛-团队程序设计天梯赛(GPLT)上海理工大学校内选拔赛(同步赛) A — E

2023年中国高校计算机大赛-团队程序设计天梯赛&#xff08;GPLT&#xff09;上海理工大学校内选拔赛&#xff08;同步赛) 文章目录A -- A Xor B Problem题目分析codeB -- 吃苹果题目分析codeC -- n皇后问题题目分析codeD -- 分苹果题目分析codeE -- 完型填空题目分析codeA – A…...

一文分析Linux v4l2框架

说明&#xff1a; Kernel版本&#xff1a;4.14 ARM64处理器&#xff0c;Contex-A53&#xff0c;双核 使用工具&#xff1a;Source Insight 3.5&#xff0c; Visio 1. 概述 V4L2(Video for Linux 2)&#xff1a;Linux内核中关于视频设备驱动的框架&#xff0c;对上向应用层提供…...

MFC常用控件使用(文本框、编辑框、下拉框、列表控件、树控件)

简介 本文章主要介绍下MFC常用控件的使用&#xff0c;包括静态文本框(Static Text)、编辑框(Edit Control)、下拉框(Combo Box)、列表控件(List Control)、树控件(Tree Control)的使用。 创建项目 我们选择 文件->新建->新建项目&#xff0c;选择MFC程序 选择基于对话…...

13 node 程序后台执行加上 tail 命令, 中断 tail 命令, 同时也中断了 node 程序

前言 呵呵 最近帮朋友解决问题[2022.09.08] 需要启动一个 node 程序, 然后 需要一个 startUp.sh 脚本 然后 反手写了一个过去, 按道理 来说 应该是 后台启动了对应的 node 程序, 然后将 标准输出, 错误输出 输出到 logs/nohup.log 日志文件中, 然后基于 tail 命令 来查看 …...

52癫痫发作预测的有效双自注意力残差网络

Effective dual self-attentional residual networks for epileptic seizure prediction 摘要 癫痫发作预测作为慢性脑疾病中最具挑战性的数据分析任务之一&#xff0c;引起了众多研究者的广泛关注。癫痫发作预测&#xff0c;可以在许多方面大大提高患者的生活质量&#xff0…...

【计算机网络】Tcp IP 面试题相关

互联网协议群&#xff08;TCP/IP&#xff09;&#xff1a;多路复用是怎么回事&#xff1f; 1.【问题】IPv4 和 IPv6 有什么区别&#xff1f; IPv4 是用 32 位描述 IP 地址&#xff0c;理论极限约在 40 亿 IP 地址&#xff1b; IPv6 是用 128 位描述 IP 地址&#xff0c;IPv6 可…...

【MySQL】MySQL的存储引擎

目录 概念 分类 操作 概念 数据库存储引擎是数据库底层软件组织&#xff0c;数据库管理系统&#xff08;DBMS&#xff09;使用数据引擎进行创建、查 询、更新和删除数据。 不同的存储引擎提供不同的存储机制、索引技巧、锁定水平等功能。现在 许多不同的数据库管理系统…...

es6动态模块import()

目录 一、语法说明 二、适用场合 三、注意点 四、示例代码 五、效果 一、语法说明 import命令会被 JavaScript 引擎静态分析&#xff0c;先于模块内的其他语句执行&#xff08;import命令叫做“连接” binding 其实更合适&#xff09;。 // 报错 if (x 2) {import MyMod…...

【Flask】Jinja2模板(十四)

Jinja2是一个单独的Python包&#xff0c;Flask依赖Jinja2&#xff0c;安装Flask时会自动安装Jinja2。Jinja2可以将数据和模板结合在一起生成动态文本。 一、引入 来看一个最简单的视图函数&#xff1a; app.route(/) def hello_world():return Hello World&#xff01; 这个…...

Mr. Cappuccino的第49杯咖啡——冒泡APP(升级版)之基于Docker部署Gitlab

冒泡APP&#xff08;升级版&#xff09;之基于Docker部署Gitlab基于Docker安装Gitlab登录Gitlab创建Git项目上传代码使用Git命令切换Git地址使用IDE更换Git地址基于Docker安装Gitlab 查看beginor/gitlab-ce镜像版本 下载指定版本的镜像 docker pull beginor/gitlab-ce:11.3.0…...

《机器学习》基础概念之【P问题】与【NP问题】

《机器学习》基础概念之【P问题】与【NP问题】 这里写目录标题《机器学习》基础概念之【P问题】与【NP问题】一、多项式&时间复杂度1.1. 多项式1.2.时间复杂度二、P问题 & NP问题2.1. P问题2.2.NP问题2.3.举例理解NP问题-TSP旅行商推销问题三、NP-hard问题&NP-C问题…...

WinRAR安装教程

文章目录WinRAR安装教程无广告1. 下载2. 安装3. 注册4. 去广告WinRAR安装教程无广告 1. 下载 国内官网&#xff1a;https://www.winrar.com.cn/ 2. 安装 双击&#xff0c;使用默认路径&#xff1a; 点击“安装”。 点击“确定”。 点击“完成”。 3. 注册 链接&#xff…...

C++:vector和list的迭代器区别和常见迭代器失效问题

迭代器常见问题的汇总vector迭代器和list迭代器的使用vector迭代器list迭代器vector迭代器失效问题list迭代器失效问题vector和list的区别vector迭代器和list迭代器的使用 学习C&#xff0c;使用迭代器和了解迭代器失效的原因是每个初学者都需要掌握的&#xff0c;接下来我们就…...

SpringSecurity如何实现前后端分离

前后端分离模式是指由前端控制页面路由&#xff0c;后端接口也不再返回html数据&#xff0c;而是直接返回业务数据&#xff0c;数据一般是JSON格式。Spring Security默认的表单登录方式&#xff0c;在未登录或登录成功时会发起页面重定向&#xff0c;在提交登录数据时&#xff…...

为ubuntu 18.04添加蓝牙驱动

目录背景方法背景 从网上买的能直接插ubuntu 1804的usb蓝牙太少了&#xff0c;而且还贵。我就直接从JD下单的一个便宜的USB蓝牙&#xff0c;结果插上机器没有驱动起不来。我的PC是个3年前的老机器&#xff0c;实在是不想升级系统&#xff0c;于是捣鼓半天捣鼓好了&#xff0c;…...

Stable Diffusion Prompt用法

Stable Diffusion可以根据你输入的提示词&#xff08;prompt&#xff09;来绘制出想象中的画面。 1、正向提示词&#xff08;Prompt&#xff09;&#xff1a; 提高图像质量的prompt: prompt用途HDR, UHD, 64K(HDR、UHD、4K、8K和64K)这样的质量词可以带来巨大的差异提升照片…...

jenkins问题

目录 python 不是内部或外部命令&#xff0c;也不是可运行的程序 ‘cmd’ 不是内部或外部命令&#xff0c;也不是可运行的程序或批处理文件。 git 不是内部或外部命令&#xff0c;也不是可运行的程序或批处理文件。 pywintypes.com_error: (-2147024891, ‘拒绝访问。’, None,…...

阅读笔记DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

zi,t∈Rz_{i,t}\in \mathbb{R}zi,t​∈R表示时间序列iii在ttt时刻的值。给一个连续时间段t∈[1,T]t\in [1, T]t∈[1,T]&#xff0c;将其划分为context window[1,t0)[1,t_0)[1,t0​)和prediction window[t0,T][t_0,T][t0​,T]。用context window的时间序列预测prediction window…...

三维GIS开发cesium智慧地铁教程(5)Cesium相机控制

一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点&#xff1a; 路径验证&#xff1a;确保相对路径.…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

dify打造数据可视化图表

一、概述 在日常工作和学习中&#xff0c;我们经常需要和数据打交道。无论是分析报告、项目展示&#xff0c;还是简单的数据洞察&#xff0c;一个清晰直观的图表&#xff0c;往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server&#xff0c;由蚂蚁集团 AntV 团队…...

Linux --进程控制

本文从以下五个方面来初步认识进程控制&#xff1a; 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程&#xff0c;创建出来的进程就是子进程&#xff0c;原来的进程为父进程。…...

MySQL 8.0 事务全面讲解

以下是一个结合两次回答的 MySQL 8.0 事务全面讲解&#xff0c;涵盖了事务的核心概念、操作示例、失败回滚、隔离级别、事务性 DDL 和 XA 事务等内容&#xff0c;并修正了查看隔离级别的命令。 MySQL 8.0 事务全面讲解 一、事务的核心概念&#xff08;ACID&#xff09; 事务是…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...