ROS2开发机器人移动
.创建功能包和节点
这里我们设计两个节点
example_interfaces_robot_01,机器人节点,对外提供控制机器人移动服务并发布机器人的状态。
example_interfaces_control_01,控制节点,发送机器人移动请求,订阅机器人状态话题。
创建节点
ros2 pkg create example_interfaces_rclcpp --build-type ament_cmake --dependencies rclcpp example_ros2_interfaces --destination-directory src --node-name example_interfaces_robot_01
touch src/example_interfaces_rclcpp/src/example_interfaces_control_01.cpp
#include "rclcpp/rclcpp.hpp"
#include "example_ros2_interfaces/srv/move_robot.hpp"
#include "example_ros2_interfaces/msg/robot_status.hpp"
class ExampleInterfacesControl : public rclcpp::Node {
public:
ExampleInterfacesControl(std::string name) : Node(name) {
RCLCPP_INFO(this->get_logger(), "节点已启动:%s.", name.c_str());
/*创建move_robot客户端*/
client_ = this->create_client<example_ros2_interfaces::srv::MoveRobot>(
"move_robot");
/*订阅机器人状态话题*/
robot_status_subscribe_ = this->create_subscription<example_ros2_interfaces::msg::RobotStatus>("robot_status", 10, std::bind(&ExampleInterfacesControl::robot_status_callback_, this, std::placeholders::_1));
}
/**
* @brief 发送移动机器人请求函数
* 步骤:1.等待服务上线
* 2.构造发送请求
*
* @param distance
*/
void move_robot(float distance) {
RCLCPP_INFO(this->get_logger(), "请求让机器人移动%f", distance);
/*等待服务端上线*/
while (!client_->wait_for_service(std::chrono::seconds(1))) {
//等待时检测rclcpp的状态
if (!rclcpp::ok()) {
RCLCPP_ERROR(this->get_logger(), "等待服务的过程中被打断...");
return;
}
RCLCPP_INFO(this->get_logger(), "等待服务端上线中");
}
// 构造请求
auto request =
std::make_shared<example_ros2_interfaces::srv::MoveRobot::Request>();
request->distance = distance;
// 发送异步请求,然后等待返回,返回时调用回调函数
client_->async_send_request(
request, std::bind(&ExampleInterfacesControl::result_callback_, this,
std::placeholders::_1));
};
private:
// 声明客户端
rclcpp::Client<example_ros2_interfaces::srv::MoveRobot>::SharedPtr client_;
rclcpp::Subscription<example_ros2_interfaces::msg::RobotStatus>::SharedPtr robot_status_subscribe_;
/* 机器人移动结果回调函数 */
void result_callback_(
rclcpp::Client<example_ros2_interfaces::srv::MoveRobot>::SharedFuture
result_future) {
auto response = result_future.get();
RCLCPP_INFO(this->get_logger(), "收到移动结果:%f", response->pose);
}
/**
* @brief 机器人状态话题接收回调函数
*
* @param msg
*/
void robot_status_callback_(const example_ros2_interfaces::msg::RobotStatus::SharedPtr msg)
{
RCLCPP_INFO(this->get_logger(), "收到状态数据位置:%f 状态:%d", msg->pose ,msg->status);
}
};
int main(int argc, char** argv) {
rclcpp::init(argc, argv);
auto node = std::make_shared<ExampleInterfacesControl>("example_interfaces_control_01");
/*这里调用了服务,让机器人向前移动5m*/
node->move_robot(5.0);
rclcpp::spin(node);
rclcpp::shutdown();
return 0;
}
编写机器人节点逻辑
example_interfaces_robot_01.cpp
#include "example_ros2_interfaces/msg/robot_status.hpp"
#include "example_ros2_interfaces/srv/move_robot.hpp"
#include "rclcpp/rclcpp.hpp"
/*创建一个机器人类,模拟真实机器人*/
class Robot {
public:
Robot() = default;
~Robot() = default;
/**
* @brief 移动指定的距离
*
* @param distance
* @return float
*/
float move_distance(float distance) {
status_ = example_ros2_interfaces::msg::RobotStatus::STATUS_MOVEING;
target_pose_ += distance;
// 当目标距离和当前距离大于0.01则持续向目标移动
while (fabs(target_pose_ - current_pose_) > 0.01) {
// 每一步移动当前到目标距离的1/10
float step = distance / fabs(distance) * fabs(target_pose_ - current_pose_) * 0.1;
current_pose_ += step;
std::cout << "移动了:" << step << "当前位置:" << current_pose_ << std::endl;
// 当前线程休眠500ms
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
status_ = example_ros2_interfaces::msg::RobotStatus::STATUS_STOP;
return current_pose_;
}
/**
* @brief Get the current pose
*
* @return float
*/
float get_current_pose() { return current_pose_; }
/**
* @brief Get the status
*
* @return int
* 1 example_ros2_interfaces::msg::RobotStatus::STATUS_MOVEING
* 2 example_ros2_interfaces::msg::RobotStatus::STATUS_STOP
*/
int get_status() { return status_; }
private:
// 声明当前位置
float current_pose_ = 0.0;
// 目标距离
float target_pose_ = 0.0;
int status_ = example_ros2_interfaces::msg::RobotStatus::STATUS_STOP;
};
class ExampleInterfacesRobot : public rclcpp::Node {
public:
ExampleInterfacesRobot(std::string name) : Node(name) {
RCLCPP_INFO(this->get_logger(), "节点已启动:%s.", name.c_str());
/*创建move_robot服务*/
move_robot_server_ = this->create_service<example_ros2_interfaces::srv::MoveRobot>(
"move_robot", std::bind(&ExampleInterfacesRobot::handle_move_robot, this, std::placeholders::_1, std::placeholders::_2));
/*创建发布者*/
robot_status_publisher_ = this->create_publisher<example_ros2_interfaces::msg::RobotStatus>("robot_status", 10);
/*创建一个周期为500ms的定时器*/
timer_ = this->create_wall_timer(std::chrono::milliseconds(500), std::bind(&ExampleInterfacesRobot::timer_callback, this));
}
private:
Robot robot; /*实例化机器人*/
rclcpp::TimerBase::SharedPtr timer_; /*定时器,用于定时发布机器人位置*/
rclcpp::Service<example_ros2_interfaces::srv::MoveRobot>::SharedPtr move_robot_server_; /*移动机器人服务*/
rclcpp::Publisher<example_ros2_interfaces::msg::RobotStatus>::SharedPtr robot_status_publisher_; /*发布机器人位姿发布者*/
/**
* @brief 500ms 定时回调函数,
*
*/
void timer_callback() {
// 创建消息
example_ros2_interfaces::msg::RobotStatus message;
message.status = robot.get_status();
message.pose = robot.get_current_pose();
RCLCPP_INFO(this->get_logger(), "Publishing: %f", robot.get_current_pose());
// 发布消息
robot_status_publisher_->publish(message);
};
/**
* @brief 收到话题数据的回调函数
*
* @param request 请求共享指针,包含移动距离
* @param response 响应的共享指针,包含当前位置信息
*/
void handle_move_robot(const std::shared_ptr<example_ros2_interfaces::srv::MoveRobot::Request> request,
std::shared_ptr<example_ros2_interfaces::srv::MoveRobot::Response> response) {
RCLCPP_INFO(this->get_logger(), "收到请求移动距离:%f,当前位置:%f", request->distance, robot.get_current_pose());
robot.move_distance(request->distance);
response->pose = robot.get_current_pose();
};
};
int main(int argc, char** argv) {
rclcpp::init(argc, argv);
auto node = std::make_shared<ExampleInterfacesRobot>("example_interfaces_robot_01");
rclcpp::spin(node);
rclcpp::shutdown();
return 0;
}
编译运行节点
colcon build --packages-up-to example_interfaces_rclcpp
控制端
source install/setup.bash
ros2 run example_interfaces_rclcpp example_interfaces_control_01

服务端
source install/setup.bash
ros2 run example_interfaces_rclcpp example_interfaces_robot_01
相关文章:
ROS2开发机器人移动
.创建功能包和节点 这里我们设计两个节点 example_interfaces_robot_01,机器人节点,对外提供控制机器人移动服务并发布机器人的状态。 example_interfaces_control_01,控制节点,发送机器人移动请求,订阅机器人状态话题…...
【强化学习】第02期:动态规划方法
笔者近期上了国科大周晓飞老师《强化学习及其应用》课程,计划整理一个强化学习系列笔记。笔记中所引用的内容部分出自周老师的课程PPT。笔记中如有不到之处,敬请批评指正。 文章目录 2.1 动态规划:策略收敛法/策略迭代法2.2 动态规划…...
安全技术和防火墙(二)
接上一节 备份和还原 iptables-save > /opt/iptables.bak iptables-restore < /opt/iptables.bak snat和dnat snat源地址转换 内网到外网 内网ip转换成可以访问外网的ip 内网的多个主机可以只有一个有效的公网ip地址访问外部网络 dnat 目的地址转发 外部用户&#…...
【51单片机入门】数码管原理
文章目录 前言共阴极与共阳极数码管多个数码管显示原理 总结 前言 在我们的日常生活中,数码管被广泛应用于各种电子设备中,如电子表、计时器、电子钟等。数码管的主要功能是显示数字和一些特殊字符。在这篇文章中,我们将探讨数码管的工作原理…...
三星DRAM、NAND,“又双叒叕”带头涨价了
据韩国媒体《每日经济新闻》报道,三星电子计划在第三季度上调服务器DRAM和企业级NAND闪存的价格,涨幅预计在15%-20%,主要受人工智能(AI)需求激增的推动。这一举措有望提振公司下半年业绩。 据《经济日报》报道援引业内消息,由于厂…...
星戈瑞FITC-PEG2000-Biotin的生物相容性
生物相容性是指材料与生物体之间相互作用时,材料对生物体无毒、无刺激,且能够被生物体接受并正常发挥其功能的特性。 FITC-PEG2000-Biotin作为一种荧光标记试剂,在细胞成像、药物传递和生物标志物检测等领域具有诸多应用前景。 FITC-PEG2000…...
数据资产管理的艺术:构建智能化、精细化的数据资产管理体系,从数据整合、分析到决策支持,为企业提供一站式的数据资产解决方案,助力企业把握数字时代的新机遇
一、引言 在数字化浪潮席卷全球的今天,数据已经成为企业最重要的资产之一。如何高效、安全地管理这些海量数据,从中提取有价值的信息,并将其转化为决策支持,是每个企业都必须面对的挑战。本文将探讨数据资产管理的艺术࿰…...
基于Java微信小程序校园自助打印系统设计和实现(源码+LW+调试文档+讲解等)
💗博主介绍:✌全网粉丝10W,CSDN作者、博客专家、全栈领域优质创作者,博客之星、平台优质作者、专注于Java、小程序技术领域和毕业项目实战✌💗 🌟文末获取源码数据库🌟感兴趣的可以先收藏起来,还…...
股票复盘思路
股票复盘是一个回顾和分析市场及个人交易决策的过程,旨在从过去的表现中学习并优化未来的投资策略。以下是一些基本的股票复盘步骤和关注点: 市场概况回顾: 观察并记录每日市场的整体表现,包括大盘指数涨跌、成交量变化。统计涨停和跌停个股的数量,了解市场情绪和活跃度。…...
OpenGL系列(六)摄像机
在 OpenGL系列(六)变换 中,一个目标物体经过模型矩阵、观察矩阵和投影矩阵的变换才能正常显示出来,其中模型矩阵主要针对目标物体,它会影响物体的位姿。观察矩阵和投影矩阵主要针对观察者而已,这两个变换决…...
一个端口配置两个vue和后端服务,nginx以及前后端服务怎么配?
nginx配置重点看server中的内容: worker_processes 8; pid /usr/local/nginx/logs/nginx.pid;events {# 此为 Linux 系统特为处理大批量文件描述符而作改进的 poll 事件模型use epoll;worker_connections 512; # 工作进程的最大连接数量# 允许同时接受多个网络连…...
295. 数据流的中位数
class MedianFinder {Queue<Integer> A,B;public MedianFinder() {A new PriorityQueue<>();//小根堆存储后半部分B new PriorityQueue<>((x,y)->(y-x));//大根堆存储前半部分}public void addNum(int num) {if(A.size()0 && B.size()0){B.add(…...
OCR训练和C#部署英文字符训练
PaddleOCR是一个基于飞桨开发的OCR(Optical Character Recognition,光学字符识别)系统。其技术体系包括文字检测、文字识别、文本方向检测和图像处理等模块。以下是其优点: 高精度:PaddleOCR采用深度学习算法进行训练…...
webpack【实用教程】
基础配置 配置的拆分和合并 通常 webpack 的配置文件会有3个 webpack.common.js 公共配置(会被另外两个配置文件导入并合并)webpack.dev.js 开发环境的配置webpack.prod.js 生产环境的配置 开发环境的本地服务 在 webpack.dev.js 中配置 devServer:…...
如何使用C++进行文件读写操作
在C中,我们可以使用标准库中的 <fstream>(文件流)来进行文件的读写操作。以下是一些基本的文件读写操作的示例。 读取文件 cpp复制代码 #include <fstream> #include <iostream> #include <string> int main() { s…...
Tensorflow Lite移动平台编译
Android平台编译 如果不做定制化操作,我们不需要自己编译TensorFlow Lite Android库。我们可以直接使用位于MavenCentral的TensorFlow Lite AAR。但是在某些情况下,我们需要本地编译TensorFlow Lite。例如,您可能正在构建一个包含operations selected from TensorFlow的自定…...
2024年6月24日-6月30日(ue5肉鸽视频p16-p25)
试过重点放在独立游戏上,有个indienova独立游戏团队是全职的,由于他们干了几个月,节奏暂时跟不上,紧张焦虑了。五一时也有点自暴自弃了,实在没必要,按照自己的节奏走即可。精力和时间也有限,放在…...
LeetCode.面试题17.24.最大子矩阵详解
问题描述 给定一个正整数、负整数和 0 组成的 N M 矩阵,编写代码找出元素总和最大的子矩阵。 返回一个数组 [r1, c1, r2, c2],其中 r1, c1 分别代表子矩阵左上角的行号和列号,r2, c2 分别代表右下角的行号和列号。若有多个满足条件的子矩阵…...
云动态摘要 2024-06-28
给您带来云厂商的最新动态,最新产品资讯和最新优惠更新。 最新优惠与活动 [新客专享]WeData 限时特惠 腾讯云 2024-06-21 数据分类分级管理,构建数据安全屏障 ,仅需9.9元! 云服务器ECS试用产品续用 阿里云 2024-04-14 云服务器…...
六、资产安全—信息分级资产管理与隐私保护(CISSP)
目录 1.信息分级 2.信息分级方法 3.责任的层级 4.资产管理 5.隐私数据管理角色 6.数据安全控制 7.数据保护方案 8.使用安全基线 六、资产安全—数据管理(CISSP): 五、身份与访问管理—身份管理和访问控制管理(CISSP): 1.信息分级 信息分级举列: 2.信息分级方…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容
基于 UniApp + WebSocket实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...
电脑插入多块移动硬盘后经常出现卡顿和蓝屏
当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时,可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案: 1. 检查电源供电问题 问题原因:多块移动硬盘同时运行可能导致USB接口供电不足&#x…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
Vite中定义@软链接
在webpack中可以直接通过符号表示src路径,但是vite中默认不可以。 如何实现: vite中提供了resolve.alias:通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...
Python网页自动化Selenium中文文档
1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API,让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API,你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...
